

User Manual

DMC-1300

 Manual Rev. 1.3a

By Galil Motion Control, Inc.

Galil Motion Control, Inc.
270 Technology Way

 Rocklin, California 95765
Phone: (916) 626-0101

Fax: (916) 626-0102

Internet Address: support@galilmc.com
URL: www.galilmc.com

Rev 12-99

Using This Manual
This user manual provides information for proper operation of the DMC-1300
controller.

Your DMC-1300 motion controller has been designed to work with both servo and
stepper type motors. In addition, the DMC-1300 has a daughter board for controllers
with more than 4 axes. Installation and system setup will vary depending upon
whether the controller will be used with stepper motors or servo motors, and whether
the controller has more than 4 axes of control. To make finding the appropriate
instructions faster and easier, icons will be next to any information that applies
exclusively to one type of system. Otherwise, assume that the instructions apply to
all types of systems. The icon legend is shown below.

Attention: Pertains to servo motor use.

Attention: Pertains to stepper motor use.

1380
Attention: Pertains to controllers with more than 4 axes.

Please note that many examples are written for the DMC-1340 four-axis controller or
the DMC-1380 eight axes controller. Users of the DMC-1330 3-axis controller,
DMC-1320 2-axis controller or DMC-1310 1-axis controller should note that the
DMC-1330 uses the axes denoted as XYZ, the DMC-1320 uses the axes denoted as
XY, and the DMC-1310 uses the X-axis only.

Examples for the DMC-1380 denote the axes as A,B,C,D,E,F,G,H. Users of the
DMC-1350 5-axis controller, DMC-1360 6-axis controller or DMC-1370, 7-axis
controller should note that the DMC-1350 denotes the axes as A,B,C,D,E, the
DMC-1060 denotes the axes as A,B,C,D,E,F and the DMC-1370 denotes the axes as
A,B,C,D,E,F,G. The axes A,B,C,D may be used interchangeably with X,Y,Z,W.

This manual was written for the DMC-1300 firmware revision 2.0 and later. For
controllers with firmware previous to revision 2.0, please consult the original manual
for your hardware. The later revision firmware was previously specified as DMC-
1300-18.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the
user to design effective error handling and safety protection as part of the machine.
Galil shall not be liable or responsible for any incidental or consequential damages.

Firmware Updates

New feature for Rev 2.0h February 1998:

Feature Description

1. CMDERR enhanced to support multitasking If CMDERR occurs on thread 1,2 or 3, thread will be
holted. Thread can be re -started with

XQ_ED2,_ED1, 1 for retry

XQ_ED3,_ED1, 1 for next instruction

2. _VM returns instantaneous commanded vector velocity

3. FA resolution increased to 0.25.

New feature for Rev 2.0g November 1997:

Feature Description

1. CR radius now has range of 16 million Allows for large circular interpolation radii

2. _AB returns abort input Allows for monitoring of abort input

3. CW,1 When output FIFO full application program will
not pause but data will be lost

A llows for output FIFO buffer to fill up without affecting
the execution of a program

4. List Variable (LV), List Array (LA), List app program labels
(LL)

Allows for the user to interrogate Ram

New feature for Rev 2.0e May 1997:

Feature Description

1. ER now accepts argument < 0 Disables error output (LED and Error Output does not turn
on for that axis)

2. During a PR decel can now be changed on an unnatural
stop

Allows for monitoring of abort input

New feature for Rev 2.0d February 1997:

Feature Description

1. AP, MF, MR in stepper now uses _DE instead of _RP Trippoints based on register after buffer

2. \ now terminates QD Download array no longer requires control sequence to
end

3. KS can now be fraction (down to .5) Allows for smaller stepper motor smoothing delay (due to
filter)

4. New arguments for MT of 2.5 and -2.5 Reverses the direction of motion from MT 2 and MT -2

5. MG now can go to 80 characters Increased message size

New feature for Rev 2.0c October 1996:

Feature Description

1. MC now works for steppers More accurate trippoint for stepper motor completion

New feature for Rev 2.0b September 1996:

Feature Description

1. Operand ‘&’ and ‘|’ for conditional statements Allows for multiple conditional statements in jump
routines

IE. (A>=3) & (B<55) | (C=78)

New feature for Rev 2.0 March 1996. (This revision is also designated DMC-1300-18).

DAC resolution increased to 16-bits.
Step motor control method improved.

Command Description
KS Step Motor Smoothing

New feature for Rev 1.5 (rev. 1.2 for DMC-1080)

Electronic Cam

New commands:
Command Description
EA Choose ECAM master
EM Cam Cycle Command
EP Cam table interval and starting point
ET ECAM table entry
EB Enable ECAM
EG Engage ECAM cycle
EQ Disengage ECAM

New features added Jan 1995:

Allow circular array recording.

New commands added July 1994 Rev 1.4:

Command Description

RI,N N is a new interrupt mask which allows changing the
interrupt mask

QU Upload array

QD Download array

MF x,y,z,w Trippoint for motion - forward direction

MR x,y,z,w Trippoint for motion - reverse direction

MC XYZW In position trippoint

TW x,y,z,w Sets timeout for in position

VR r Sets speed ratio for VS

New commands added January 1994 Rev 1.3:

Can specify parameters with axis designator. For example:

Command Description

KPZ=10 Set Z axis gain to 10

KP*=10 Set all axes gains to 10

(KPXZ=10 is invalid. Only one or all axes can be specified at a time).

New commands added July 1993 Rev 1.2:

Command Description

_UL Gives available variables

_DL Give available labels

@COM[n] 2's complement function

New commands added March 1993: Rev 1.2

Command Description

_CS Segment counter in LM, VM and CM modes

_AV Return distance travelled in LM and VM modes

_VPX

Return the coordinate of the last point in a motion
sequence, LM or VM

VP x,y<n Can specify vector speed with each vector segment Where
<n sets vector speed

New commands added January 1993:

Command Description

HX Halt execution for multitasking

A T At time trippoint for relative time from reference

ES Ellipse scale factor

OB n,expression Defines output n where expression is logical operation,
such as I1 & I6, variable or array element

XQ#Label,n Where n = 0 through 3 and is program thread for
multitasking

DV Dual velocity for Dual Loop

Feature Description

1. Allows gearing and coordinated move simultaneously

2. Multitasking for up to four independent programs

3. Velocity Damping from auxiliary encoder for dual loop

Doc-To-Help Standard Template Contents •• i

Contents

Chapter 1 Overview 1

Introduction ...1
Overview of Motor Types ...2

Standard Servo Motors with +/- 10 Volt Command Signal ...2
Stepper Motor with Step and Direction Signals ...2

DMC 1300 Functional Elements ..2
Microcomputer Section..3
Motor Interface..3
Communication..3
General I/O..3
System Elements..4
Motor ..4
Amplifier (Driver)...4
Encoder...4
Watch Dog Timer..5

Chapter 2 Getting Started 7

Elements You Need ...7
Installing the DMC 1300...8

Step 1. Determine Overall Motor Configuration...8
Step 2. Configure Address Jumpers on the DMC 1300...9
Step 3. Install the DMC 1300 into VME Host..9
Step 4. Install and Test Communications Software..10
Step 5. Connect Amplifiers and Encoders...10
Step 6a. Connect Standard Servo Motors ...12
Step 6b. Connect Step Motors ..15
Step 7. Tune the Servo System...16

Design Examples..17
Example 1 - System Set-up ...17
Example 2 - Profiled Move..17
Example 3 - Multiple Axes ..18
Example 4 - Independent Moves...18
Example 5 - Position Interrogation..18
Example 6 - Absolute Position...19
Example 7 - Velocity Control..19
Example 8 - Operation Under Torque Limit..20
Example 9 - Interrogation..20
Example 10 - Operation in the Buffer Mode...20
Example 11 - Motion Programs ..21
Example 12 - Motion Programs with Loops...21
Example 13 - Motion Programs with Trippoints..21
Example 14 - Control Variables ..22

ii •• Index Doc-To-Help Standard Template

Example 15 - Linear Interpolation..23
Example 16 - Circular Interpolation ...24

Chapter 3 Connecting Hardware 25

Overview...25
Using Optoisolated Inputs ..25

Limit Switch Input ...25
Home Switch Input..26
Abort Input ..27
Uncommitted Digital Inputs...27

Wiring the Optoisolated Inputs ..27
Using an Isolated Power Supply...29
Bypassing the Opto-Isolation:..30
Changing Optoisolated Inputs From Active Low to Active High...................................31

Amplifier Interface...31
TTL Inputs ...32
Analog Inputs ..32
TTL Outputs ..33
Offset Adjustment...33

Chapter 4 VME Communication 35

Introduction ...35
RAM Organization..35

Semaphore Registers ..37
General Registers...37
Command Buffer..42
Response Buffer..45
Contour Buffer...47
Program Buffer...48
Axis Buffers..49
Coordinate Axis Buffer...52
Variable Buffer ...52
Interrupts ..53

Chapter 5 Command Basics 55

Introduction ...55
Command Syntax...56

ASCII...56
Binary ..57
Coordinated Motion with more than 1 axis ...57
Program Syntax..57

Controller Response to DATA ...57
Interrogating the Controller...58

Interrogation Commands..58
Additional Interrogation Methods...59
Operands ..59
Command Summary...60

Chapter 6 Programming Motion 61

Overview...61
Independent Axis Positioning...61

Doc-To-Help Standard Template Contents •• iii

Command Summary - Independent Axis ..62
Operand Summary - Independent Axis ..62

Independent Jogging..64
Command Summary - Jogging...64
Operand Summary - Independent Axis ..65

Linear Interpolation Mode...65
Specifying Linear Segments ..66
Specifying Vector Acceleration, Deceleration and Speed: ...66
Additional Commands..67
Command Summary - Linear Interpolation ..68
Operand Summary - Linear Interpolation...68

Vector Mode: Linear and Circular Interpolation Motion...71
Specifying Vector Segments..71
Specifying Vector Acceleration, Deceleration and Speed:...72
Additional Commands..72
Command Summary - Vector Mode Motion..74
Operand Summary - Vector Mode Motion..74

Electronic Gearing ...76
Command Summary - Electronic Gearing...76
Operand Summary - Electronic Gearing ...76

Contour Mode ...78
Specifying Contour Segments...78
Additional Commands ..80
Command Summary - Contour Mode...80
Operand Summary - Contour Mode ...80

Stepper Motor Operation...83
Specifying Stepper Motor Operation...84
Using an Encoder with Stepper Motors ..85
Command Summary - Stepper Motor Operation...85
Operand Summary - Stepper Motor Operation...85

Dual Loop (Auxiliary Encoder)..86
Backlash Compensation...87
Command Summary - Using the Auxiliary Encoder...88
Operand Summary - Using the Auxiliary Encoder..88

Motion Smoothing..89
Using the IT and VT Commands (S curve profiling):...89
Using the KS Command (Step Motor Smoothing):..90

Homing..91
High Speed Position Capture (Latch)...94

Chapter 7 Application Programming 97

Overview...97
Using the DMC 1300 Editor to Enter Programs ..97

Edit Mode Commands ..98
Program Format..100

Using Labels in Programs ..100
Special Labels ..101
Commenting Programs ..101

Executing Programs - Multitasking...103
Debugging Programs ..104
Program Flow Commands...106

Event Triggers & Trippoints ...106
Event Trigger Examples:...108

iv •• Index Doc-To-Help Standard Template

Conditional Jumps...111
Subroutines ..114
Stack Manipulation...114
Automatic Subroutines for Monitoring Conditions ..114

Mathematical and Functional Expressions..117
Mathematical Expressions ...117
Bit-Wise Operators ...118
Functions..119

Variables ...120
Assigning Values to Variables:...120

Operands ..122
Special Operands (Keywords)...123

Arrays ...123
Defining Arrays...123
Assignment of Array Entries...124
Automatic Data Capture into Arrays ...125
Deallocating Array Space ..127

Output of Data (Numeric and String)...127
Sending Messages ..127

Programmable Hardware I/O..128
Digital Outputs ..128
Digital Inputs ...129
Input Interrupt Function ..130
Analog Inputs ..130

Example Applications ...131
Wire Cutter...131
X-Y Table Controller...133
Speed Control by Joystick...135
Position Control by Joystick...136
Backlash Compensation by Sampled Dual-Loop ...136

Chapter 8 Hardware & Software Protection 139

Introduction ...139
Hardware Protection ...139

Output Protection Lines ...139
Input Protection Lines ..139

Software Protection...140
Programmable Position Limits ...140
Off-On-Error...141
Automatic Error Routine ..141
Limit Switch Routine...141

Chapter 9 Troubleshooting 143

Overview...143
Installation..143
Communication..144
Stability...144
Operation..144

Chapter 10 Theory of Operation 145

Overview...145

Doc-To-Help Standard Template Contents •• v

Operation of Closed-Loop Systems ...147
System Modeling ..148

Motor-Amplifier...149
Encoder...151
DAC...152
Digital Filter..152
ZOH...152

System Analysis ..153
System Design and Compensation...155

The Analytical Method ..155

Chapter 11 Command Reference 159

Command Descriptions ..159
Axes Arguments..159
Parameter Arguments ...159
Direct Command Arguments ...160
Interrogation ..160
Operand Usage..160
Usage Description...160
Default Description...161
Servo and Stepper Motor Notation:...161
AB (Binary D3) ...162
AC (Binary CC)..163
AD (Binary A2)...164
AI (Binary A1) ..166
AL (Binary 90)...167
AM (Binary A4)..168
AP (Binary A3) ...169
AR (Binary CF) ...170
AS (Binary A5) ...171
AT (Binary A7)...172
AV (Binary AB) ..173
BG (Binary CE) ..174
BL (Binary C7)...176
BN (Binary B0)..177
BP (Binary B2)...178
BV (Binary B2) ..179
CB (Binary 8E)...180
CD (No Binary)...181
CE (Binary F2)...182
CM (Binary D4)...183
CN (Binary F3) ..184
CP (Binary 9E) ...185
CR (Binary E1)...186
CS (Binary E2)..188
CW (No Binary)..189
DA (No Binary)...190
DC (Binary CD)...191
DE (Binary C4) ..192
DM (No Binary)..193
DP (Binary C3) ..194
DT (No Binary)...195
DV (Binary F4) ..196

vi •• Index Doc-To-Help Standard Template

ED (Binary 98)...197
EI (Binary 8C)..198
EN (Binary 84)...200
ER (Binary 88) ...202
ES (Binary EB)...203
FA (Binary C1)..204
FE (Binary D1)...205
FI (Binary D6)..206
FL (Binary C6)...207
FV (Binary C5)...208
GA (No Binary)...209
GN (Binary B8)..210
GR (Binary D7)..211
HM (Binary D0) ..212
HX (Binary 97) ..214
II (Binary II)...215
IL (Binary B5)..217
IP (Binary CF)..218
IT (Binary BC)...219
JG (Binary CB)...220
JP (No Binary)...221
JS (No Binary)...222
KD (Binary B7)..223
KI (Binary BA)..224
KP (Binary B6) ..225
KS (Binary ?)...226
LE (Binary E6) ...227
_LF* (No Binary)..228
* This is an Operand - Not a command...228
LI (Binary E9) ..229
LM (Binary E8)..231
_LR* (Binary ?)...233
*Note: This is an Operand - Not a command...233
MC (Binary D8)...234
MF (Binary D9)...236
MG (Binary 81)..237
MO (Binary BD)..238
MR (No Binary)..239
MT (Binary F5) ...240
NO (No Binary)...241
OB (Binary 92)...242
OE (Binary C0) ..243
OF (Binary C2) ..244
OP (Binary 8F)...245
PA (Binary C8)..246
PP (No Binary)..247
PR (Binary C9)...248
RA (No Binary)...249
RC (Binary F0)...250
RD (No Binary)...251
RE (No Binary)..252
RI (No Binary)...253
RL (Binary F1)...254

Doc-To-Help Standard Template Contents •• vii

RM (Binary B1)...255
RP (No Binary)..256
RS (Binary AC) ...258
<control>R<control>S..259
<control>R<control>V..260
SB (Binary 8D) ..261
SC (No Binary)..262
SH (Binary BB)..263
SP (Binary CA)..264
ST (Binary D2) ..265
TB (No Binary)..266
TC (No Binary)..267
TD (No Binary)...270
TE (No Binary)..271
TI (Binary E0)..272
TIME* ...274
TL (Binary BE) ..275
TM (Binary AE) ..276
TN (Binary EC)..277
TP (No Binary)..278
TR (Binary AF) ...279
TS (Binary DF)..280
TT (No Binary)..282
TV (No Binary)..283
TW (No Binary)..284
UI (Binary 8B) ...285
VA (Binary E3)..286
VD (Binary E5) ...287
VE (Binary E6)...288
VM (Binary E7) ...289
VP (Binary B2)...291
VS (Binary E4)...293
VT (Binary EA)...294
WC (No Binary)..295
WT (Binary A6)..296
XQ (Binary 82) ..297
ZR (Binary B9) ..298
ZS (Binary 83) ...299

Appendices 301

Electrical Specifications..301
Servo Control...301
Stepper Control..301
Input/Output ..301
Power...302

Performance Specifications..302
Connectors for DMC 1300 Main Board ...303

J2 - Main (60 pin IDC)...303
J5 - General I/O (26 pin IDC) ..304
J3 - Aux Encoder (20 pin IDC) ...304
J4 - Driver (20 pin IDC) ...305
J6 - Daughter Board Connector (60 pin) ...305
J7 - 10 pin ..305

viii •• Index Doc-To-Help Standard Template

Connectors for Auxiliary Board (Axes E,F,G,H) ...306
JD2 - Main (60 pin IDC)..306
JD5 - I/O (26 pin IDC)...308
JD3 - 20 pin IDC - Auxiliary Encoders ..308
JD4 - 20 pin IDC - Amplifiers ...309
JD6 - Daughterboard Connector (60 pin)...309

Pin-Out Description for DMC 1300...310
Jumper Description for DMC 1300..312
Offset Adjustments for DMC 1300...313
Accessories and Options...313
ICM-1100 Interconnect Module..314
AMP/ICM-1100 CONNECTIONS...314

J2 - Main (60 pin IDC)...318
J3 - Aux Encoder (20 pin IDC) ...318
J4 - Driver (20 pin IDC) ...318
J5 - General I/O (26 pin IDC) ..318
Connectors are the same as described in section entitled “Connectors for DMC 1300
Main Board”. see pg. 303...318
JX6, JY6, JZ6, JW6 - Encoder Input (10 pin IDC) ...318

ICM-1100 Drawing ..319
AMP-11x0 Mating Power Amplifiers..320
Coordinated Motion - Mathematical Analysis ...321
DMC 500/DMC 1300 Comparison...324

DMC 500/DMC 1300 Command Comparison..325
List of Other Publications ..329
Contacting Us ..329
WARRANTY...330
Using This Manual ...ii

Index 331

DMC 1300 Chapter 1 Overview •• 1

Chapter 1 Overview

Introduction
The DMC 1300 series motion controller is a state-of-the-art motion controller that plugs into the VME
Bus. Performance capability of the DMC 1300 series controllers includes: 8 MHz encoder input
frequency, 16-bit motor command output DAC, +/-2 billion counts total travel per move, sample rate at
up to 125 usec/axis, 16-bit Dual Port RAM, bus interrupts and non-volatile memory for parameter
storage. These controllers provide high performance and flexibility while maintaining ease of use and
low cost.

Designed for maximum system flexibility, the DMC 1300 is available for one, two, three or four axes
configuration per card. An add-on card is available for control of five, six, seven or eight axes. The
DMC 1300 can be interfaced to a variety of motors and drives including step motors, servo motors and
hydraulic systems.

Each axis accepts feedback from a quadrature linear or rotary encoder with input frequencies up to 8
million quadrature counts per second. For dual-loop applications in which an encoder is required on
both the motor and the load, auxiliary encoder inputs are included for each axis.

The DMC 1300 provides many modes of motion, including jogging, point-to-point positioning, linear
and circular interpolation, electronic gearing and user-defined path following. Several motion
parameters can be specified including acceleration and deceleration rates and slew speed. The DMC
1300 also provides S-curve acceleration for motion smoothing.

For synchronizing motion with external events, the DMC 1300 includes 8 optoisolated inputs, 8
programmable outputs and 7 analog inputs. 24 inputs and 16 programmable outputs are available for
five through eight axes. Event triggers can automatically check for elapsed time, distance and motion
complete.

Despite its full range of sophisticated features, the DMC 1300 is easy to program. Commands may be
send to the controller in either Binary or ASCII format. ASCII instructions are represented by two letter
commands such as BG to begin motion and SP to set motion speed. Conditional Instructions, Jump
Statements, and Arithmetic Functions are included for writing self-contained applications programs.

The DMC 1300 provides several error handling features. These include software and hardware limits,
automatic shut-off on excessive error, abort input, and user-definable error and limit routines. In
addition, the DMC 1300 has a full range of VME Bus interrupts.

2 •• Chapter 1 Overview DMC1000

Overview of Motor Types
The DMC 1300 can provide the following types of motor control:

1. Standard servo motors with +/- 10 volt command signals

2. Step motors with step and direction signals

3. Other actuators such as hydraulics - For more information, contact Galil.

The user can configure each axis for any combination of motor types, providing maximum flexibility.

Standard Servo Motors with +/- 10 Volt Command Signal
The DMC 1300 achieves superior precision through use of a 16-bit motor command output DAC and a
sophisticated PID filter that features velocity and acceleration feedforward, an extra pole filter and
integration limits.

The controller is configured by the factory for standard servo motor operation. In this configuration,
the controller provides an analog signal (+/- 10Volt) to connect to a servo amplifier. This connection is
described in Chapter 2.

Stepper Motor with Step and Direction Signals
The DMC 1300 can control stepper motors. In this mode, the controller provides two signals to connect
to the stepper motor: Step and Direction. For stepper motor operation, the controller does not require
an encoder and operates the stepper motor in an open loop fashion. Chapter 2 describes the proper
connection and procedure for using stepper motors.

DMC 1300 Functional Elements
The DMC 1300 circuitry can be divided into the following functional groups as shown in Figure 1.1 and
discussed below.

DMC 1300 Chapter 1 Overview •• 3

68331
Microcomputer

64K RAM
64K EPROM
256 EEPROM

I/O
Interface

GL-1800
4-Axes

Motor/Encoder
Interface

Watch Dog
Timer

8 Out

8 In

7 Analog In

To Host

To Amps

From
Limits

From
Encoders

Communication
Dual Port
2K RAM

Figure 1.1 - DMC 1300 Functional Elements

Microcomputer Section
The main processing unit of the DMC 1300 is a specialized 32-bit Motorola 68331 Series Microcomputer
with 64K RAM (256K available as an option), 64K EPROM and 256 bytes EEPROM. The RAM
provides memory for variables, array elements and application programs. The EPROM stores the
firmware of the DMC 1300. The EEPROM allows certain parameters and application programs to be
saved in non-volatile memory upon power down.

Motor Interface
For each axis, a GL-1800 custom, sub-micron gate array performs quadrature decoding of the encoders
at up to 8 MHz, generates a +/-10 Volt analog signal (16 Bit D-to-A) for input to a servo amplifier, and
generates step and direction signal for step motor drivers.

Communication
The DMC 1300 uses a Dual Port RAM for communication. This controller resides in the 16-bit VME
short I/O space, with 2 byte wide data transfers through the 2K Dual Port RAM (ID77133). The default
base address of the controller is F000, with address jumpers A12 - A15 available to select a specific
address.

General I/O
The DMC 1300 provides interface circuitry for eight optoisolated inputs, eight general outputs and
seven analog inputs (12-Bit ADC).

1380 Controllers with 5 or more axes provide 24 inputs and 16 outputs.

4 •• Chapter 1 Overview DMC1000

System Elements
As shown in Fig. 1.2, the DMC 1300 is part of a motion control system which includes amplifiers, motors
and encoders. These elements are described below.

VME Host DMC-1300 Controller Amplifier (Driver)

Power Supply

Encoder Motor

Figure 1.2 - Elements of Servo systems

Motor
A motor converts current into torque which produces motion. Each axis of motion requires a motor
sized properly to move the load at the desired speed and acceleration. Galil's Motion Component
Selector software can help you calculate motor size and drive size requirements. Contact Galil at 800-
377-6329 if you would like this product.

The motor may be a step or servo motor and can be brush-type or brushless, rotary or linear. For step
motors, the controller can control full-step, half-step, or microstep drives.

Amplifier (Driver)
For each axis, the power amplifier converts a +/-10 Volt signal from the controller into current to drive
the motor. The amplifier should be sized properly to meet the power requirements of the motor. For
brushless motors, an amplifier that provides electronic commutation is required. The amplifiers may be
either pulse-width-modulated (PWM) or linear. They may also be configured for operation with or
without a tachometer. For current amplifiers, the amplifier gain should be set such that a 10 Volt
command generates the maximum required current. For example, if the motor peak current is 10A, the
amplifier gain should be 1 A/V. For velocity mode amplifiers, 10 Volts should run the motor at the
maximum speed.

 For stepper motors, the amplifier converts step and direction signals into current.

Encoder
An encoder translates motion into electrical pulses which are fed back into the controller. The DMC
1300 accepts feedback from either a rotary or linear encoder. Typical encoders provide two channels in
quadrature, known as CHA and CHB. This type of encoder is known as a quadrature encoder.
Quadrature encoders may be either single-ended (CHA and CHB) or differential (CHA,CHA-,CHB,CHB-
). The DMC 1300 decodes either type into quadrature states or four times the number of cycles.
Encoders may also have a third channel (or index) for synchronization.

DMC 1300 Chapter 1 Overview •• 5

The DMC 1300 can also interface to encoders with pulse and direction signals.

There is no limit on encoder line density, however, the input frequency to the controller must not
exceed 2,000,000 full encoder cycles/second or 8,000,000 quadrature counts/sec. For example, if the
encoder line density is 10,000 cycles per inch, the maximum speed is 200 inches/second.

The standard voltage level is TTL (zero to five volts), however, voltage levels up to 12 Volts are
acceptable. If using differential signals, 12 Volts can be input directly to the DMC 1300. Single-ended
12 Volt signals require a bias voltage input to the complementary inputs.

To interface with other types of position sensors such as resolvers or absolute encoders, Galil can
customize an expanded I/O board and DMC 1300 command set. Please contact Galil to talk to one of our
applications engineers about your particular system requirements.

Watch Dog Timer
The DMC 1300 provides an internal watch dog timer which checks for proper microprocessor operation.
The timer toggles the Amplifier Enable Output (AEN) which can be used to switch the amplifiers off in
the event of a serious DMC 1300 failure. The AEN output is normally high. During power-up and if the
microprocessor ceases to function properly, the AEN output will go low. The error light for each axis
will also turn on at this stage. A reset is required to restore the DMC 1300 to normal operation. A
hardware interrupt may also be configured to notify the VME host of a watch dog timer occurrence.
Hardware interrupts are discussed in more detail in Chapter 4. Consult the factory for a Return
Materials Authorization (RMA) Number if your DMC 1300 is damaged.

DMC1000 Chapter 2 Getting Started •• 2 - 7

Chapter 2 Getting Started

Elements You Need
Before you start, you will need the following system elements:

1. DMC 1300 Motion Controller and included 60-pin ribbon cable. Also included is
a 26-pin ribbon cable for general I/O.

1a. For stepper motor operation, you will need an additional 20-pin ribbon cable for
J4.

2. Servo motors with Optical Encoder (one per axis) or step motors

3. Power Amplifiers

4. Power Supply for Amplifiers

5. VME Bus host system with VME interface software

6. BIT 3’s “PC to VME Adapter System” with PC and Galil Comm-1300 software
(Optional, but strongly recommended).

7. An Interface Module (Optional, but strongly recommended). The Galil ICM-1100
is an interconnect module with screw type terminals that directly interfaces to the
DMC 1300 controller. Note: An additional ICM-1100 is required for the DMC-
1350 through DMC-1380.

The motors may be servo (brush type or brushless) or steppers. The amplifiers should be suitable for
the motor and may be linear or pulse-width-modulated. An amplifier may have current feedback or
voltage feedback.

For servo motors, the amplifiers should accept an analog signal in the +/-10 Volt range as a command.
The amplifier gain should be set so that a +10V command will generate the maximum required current.
For example, if the motor peak current is 10A, the amplifier gain should be 1 A/V. For velocity mode
amplifiers, a command signal of 10 Volts should run the motor at the maximum required speed.

For step motors, the amplifiers should accept step and direction signals. For start-up of a step motor
system refer to “Connecting Step Motors” on page Error! Bookmark not defined..

DMC1000 Chapter 2 Getting Started •• 2 - 8

Installing the DMC 1300
The DMC 1300 is a VME card that requires users to be familiar with VME system protocol and/or
programming. The following section describes the steps for installing, communicating with and
developing the DMC 1300 system.

There are two options available for interfacing to a VME system:

1. Write custom interface software for the VME host. C-drivers are available for the
Galil controller to help in this development. Chapter 4 of this manual describes in
detail all the DMC 1300 address registers needed for a custom host program.
This approach requires familiarity with both the VME system protocol and
programming.

OR

2. Use a PC to VME adapter system, such as the Model 406-202 from BIT 3 (Phone
612-881-6955). This system will substitute a PC for the VME host, allowing for
quick and easy development. The Galil Comm-1300 software may be used with
this setup, which includes the basic terminal emulator, interface access to the
Dual Port RAM and development tools for tuning servo motors. This approach
allows for a faster system setup, and is useful in prototyping applications.

Installation of a comp lete, operational DMC 1300 system can be described in 9 steps.

Step 1. Determine overall motor configuration.

Step 2. Configure address jumpers on the DMC 1300.

Step 3. Install the DMC 1300 into the VME host.

Step 4. Install and test communications software.

Step 5. Connect amplifiers and Encoders.

Step 6a. Connect standard servo motors.

Step 6b. Connect step motors.

Step 7. Tune the servo system

Step 1. Determine Overall Motor Configuration
Before setting up the motion control system, the user must determine the desired motor configuration.
The DMC 1300 can control any combination of standard servo motors, and stepper motors. Other
types of actuators, such as hydraulics, can also be controlled. Please consult Galil for more information.

The following configuration information is necessary to determine the proper motor configuration:

Standard Servo Motor Operation:

The DMC 1300 has been setup by the factory for standard servo motor operation providing an analog
command signal of +/- 10V. No hardware or software configuration is required for standard servo motor
operation.

Stepper Motor Operation:

To configure the DMC 1300 for stepper motor operation, the controller requires a jumper for each
stepper motor and the command, MT, must be given.

DMC1000 Chapter 2 Getting Started •• 2 - 9

The DMC 1300 has jumpers on the board which may need to be installed for stepper motor operation.
The following describes each of the jumpers.

For each axis that will be driving a stepper motor, a stepper mode (SM) jumper must be connected.

1380
If you using a controller with more than 4 axis, you will have two VME cards residing on the backplane.
In this case, you will have 2 sets of stepper motor jumpers, one on each card. The jumpers on the first
card will be for axes X,Y,Z and W (or A,B,C, and D) and the second will be E,F,G and H.

The stepper mode jumpers are located next to the GL-1800 which is the largest IC on the board. The
jumper set is labeled JP20 and the individual stepper mode jumpers are labeled SMX, SMY, SMZ, SMW.
The fifth jumper of the set, OPT, is for use by Galil technicians only. Further instruction for stepper
motor connections are discussed in Step 8b.

The jumper set, JP9, can be used to connect the controllers internal power supply to the optoisolation
inputs. This may be desirable if your system will be using limit switches, home inputs digital inputs, or
hardware abort and optoisolation is not necessary for your system. For a further explanation, see
section Bypassing the Opto-Isolation in Chapter 3.

Step 2. Configure Address Jumpers on the DMC 1300
The DMC 1300 is installed directly into the VME backplane. The address jumpers of the controller must
be set for proper communication with the host. If using the BIT 3 system, address jumpers must also be
set on both the PC card and VME card. The procedures for both setups are outlined below.

BIT 3 System Interface

In order to communicate with the DMC 1300 using the Bit 3 system, jumpers must be installed on the
controller, Bit 3 VME card and Bit 3 PC card. Setting the address jumpers of the Galil controller is
identical to the set-up for the custom VME interface, with the default at F0 00. Once this has been
accomplished, the Bit 3 VME and PC card are configured as shown on page XX of the appendix.

Custom VME Interface

The first step in communicating with the Galil controller is to set the address jumpers to the proper
configuration. These address jumpers can be found at location JP11, labeled as A12 through A15. The
default address of the board with no jumpers installed is F0 00. Placing a jumper will make the
corresponding bit a zero, while no jumper corresponds to a one. For example, to set the base address to
E0 00 hex, the following jumpers would be installed.

 A15 A14 A13 A12

 1 1 1 0

 N N N J

where N means no jumper and J means a jumper is present.

Step 3. Install the DMC 1300 into VME Host
With the address jumpers properly configured, the DMC 1300 may be installed into the VME host.
With the custom VME system, this is simply a matter of installing the controller into an available slot
and powering up the system. With the Bit 3 system, the process is more in depth. First, the Bit 3 PC
adapter card, once properly address, must be inserted into an ISA slot on the host PC. The Bit 3 VME
card, also properly addressed, is then installed into the master VME slot (usually the first slot). The Bit
3 cable is then used to connect the PC to the VME host. Finally, the DMC 1300 may be installed into
any VME slot. Please refer to the Bit 3 documentation for more specific information.

DMC1000 Chapter 2 Getting Started •• 2 - 10

Step 4. Install and Test Communications Software
The communication software used will depend on the type of VME system being used, Bit 3 or custom
system. Both procedures are outlined below.

BIT 3 System Interface

Communication with the Bit 3 system can be established using the Galil Comm 1300 software. This
software provides a terminal emulator to send commands to the controller as well as a display of axis
and Dual Port RAM status information.

To install this software, insert the Comm 1300 communication disks. In the DOS command prompt, type
A:INSTALL <enter> and follow the instructions on the screen. Upon installation, execute the Comm
1300 software by running COMM1300.exe. The screen should now show the terminal emulator as well
as status information for the controller axes and the Dual Port RAM.

To test the communication with the controller, type TP <enter> at the command prompt. The position
of the corresponding axes should be displayed. There are also various special functions that can be
used in this terminal screen such as:

 !UL <file name> Uploads file to PC from 1300

 !DO <file name> Downloads file from PC into 1300

!? Reports available screen and configuration options

!BI Selects binary mode of communication

!AS Selects ASCII mode of communication

!DE Selects decimal display option

!HE Selects hex display option

!W m,n Displays contents of address m, m+1, m+2, m+3 as a four
byte value. n is the watch number 1, 2 or 3. You can
watch up to three groups of data.

Example: !W 20,1 Watches address 20; #1

 !W 30,2 Watches address 30; #2

Q Quits the COMM1300

Custom VME Interface

Communication with a custom VME system will depend on the type of host software being used. Upon
powering up the DMC 1300, the first step should be to test communication with the controller. To test
this, read the data at address 241 hex above the base address. This should return a 00 hex. Next, write a
byte to that address and read the data again. If this was successful, the controller has been properly
addressed.

Sending commands to the controller is a fairly detailed process. The procedure for sending commands
can be found in Chapter 4.

Step 5. Connect Amplifiers and Encoders.
Once you have established communications between the host and the DMC 1300, you are ready to
connect the rest of the motion control system. The motion control system typically consists of an ICM-
1100 Interface Module, an amplifier for each axis of motion, and a motor to transform the current from
the amplifier into torque for motion. Galil also offers the AMP-11X0 series Interface Modules which are
ICM-1100’s equipped with servo amplifiers for brush type DC motors.

DMC1000 Chapter 2 Getting Started •• 2 - 11

If you are using an ICM-1100, connect the 100-pin ribbon cable to the DMC 1300 and to the connector
located on the AMP-11X0 or ICM-1100 board. The ICM-1100 provides screw terminals for access to
the connections described in the following discussion.

1380
Motion Controllers with more than 4 axes require a second ICM-1100 or AMP-11X0 and second 100-pin
cable.

System connection procedures will depend on system components and motor types. Any combination
of motor types can be used with the DMC 1300.

Here are the first steps for connecting a motion control system:

Step A. Connect the motor to the amplifier with no connection to the controller.
Consult the amplifier documentation for instructions regarding proper
connections. Connect and turn-on the amplifier power supply. If the amplifiers
are operating properly, the motor should stand still even when the amplifiers are
powered up.

Step B. Connect the amplifier enable signal.

 Before making any connections from the amplifier to the controller, you need to
verify that the ground level of the amplifier is either floating or at the same
potential as earth.

WARNING: When the amplifier ground is not isolated from the power line or when it has a different
potential than that of the computer ground, serious damage may result to the computer controller
and amplifier.

 If you are not sure about the potential of the ground levels, connect the two
ground signals (amplifier ground and earth) by a 10 KΩ resistor and measure the
voltage across the resistor. Only if the voltage is zero, connect the two ground
signals directly.

 The amplifier enable signal is used by the controller to disable the motor. It will
disable the motor when the watchdog timer activates, the motor-off command,
MO, is given, or the position error exceeds the error limit with the "Off-On-Error"
function enabled (see the command OE for further information).

The standard configuration of the AEN signal is TTL active high. In other
words, the AEN signal will be high when the controller expects the amplifier to be
enabled. The polarity and the amplitude can be changed if you are using the
ICM-1100 interface board. To change the polarity from active high (5 volts =
enable, zero volts = disable) to active low (zero volts = enable, 5 volts = disable),
replace the 7407 IC with a 7406. Note that many amplifiers designate the enable
input as ‘inhibit’.

To change the voltage level of the AEN signal, note the state of the resistor pack
on the ICM-1100. When Pin 1 is on the 5V mark, the output voltage is 0-5V. To
change to 12 volts, pull the resistor pack and rotate it so that Pin 1 is on the 12
volt side. If you remove the resistor pack, the output signal is an open collector,
allowing the user to connect an external supply with voltages up to 24V.

 On the ICM-1100, the amp lifier enable signal is labeled AENX for the X axis.
Connect this signal to the amplifier (figure 2.3) and issue the command, MO, to
disable the motor amplifiers - often this is indicated by an LED on the amplifier.

Step C. Connect the encoders

 For stepper motor operation, an encoder is optional.

DMC1000 Chapter 2 Getting Started •• 2 - 12

 For servo motor operation, if you have a preferred definition of the forward and
reverse directions, make sure that the encoder wiring is consistent with that
definition.

 The DMC 1300 accepts single-ended or differential encoder feedback with or
without an index pulse. If you are not using the AMP-11X0 or the ICM-1100 you
will need to consult the appendix for the encoder pinouts for connection to the
motion controller. The AMP-11X0 and the ICM-1100 can accept encoder
feedback from a 10-pin ribbon cable or individual signal leads. For a 10-pin
ribbon cable encoder, connect the cable to the protected header connector
labeled X ENCODER (repeat for each axis necessary). For individual wires,
simply match the leads from the encoder you are using to the encoder feedback
inputs on the interconnect board. The signal leads are labeled XA+ (channel A),
XB+ (channel B), and XI+. For differential encoders, the complement signals are
labeled XA-, XB-, and XI-.

 Note: When using pulse and direction encoders, the pulse signal is connected to
XA+ and the direction signal is connected to XB+. The controller must be
configured for pulse and direction with the command CE. See the command
summary for further information on the command CE.

Step D. Verify proper encoder operation.

 Start with the X encoder first. Once it is connected, turn the motor shaft and
interrogate the position with the instruction TPX <return>. The controller
response will vary as the motor is turned.

 At this point, if TPX does not vary with encoder rotation, there are three
possibilities:

1. The encoder connections are incorrect - check the wiring as necessary.

2. The encoder has failed - using an oscilloscope, observe the encoder signals. Verify
that both channels A and B have a peak magnitude between 5 and 12 volts. Note that
if only one encoder channel fails, the position reporting varies by one count only. If
the encoder failed, replace the encoder. If you cannot observe the encoder signals,
try a different encoder.

3. There is a hardware failure in the controller- connect the same encoder to a different
axis. If the problem disappears, you probably have a hardware failure. Consult the
factory for help.

Step 6a. Connect Standard Servo Motors
The following discussion applies to connecting the DMC 1300 controller to standard servo motor
amplifiers:

The motor and the amplifier may be configured in the torque or the velocity mode. In the torque mode,
the amplifier gain should be such that a 10 Volt signal generates the maximum required current. In the
velocity mode, a command signal of 10 Volts should run the motor at the maximum required speed.

Step by step directions on servo system setup are also included on the WSDK (Windows Servo Design
Kit) software offered by Galil. See section on WSDK for more details.

Step A. Check the Polarity of the Feedback Loop

 It is assumed that the motor and amplifier are connected together and that the
encoder is operating correctly (Step B) . Before connecting the motor amplifiers

DMC1000 Chapter 2 Getting Started •• 2 - 13

to the controller, read the following discussion on the setting Error Limits and
Torque Limits. Note that this discussion only uses the X axis for the examples.

Step B. Set the Error Limit as a Safety Precaution

 Usually, there is uncertainty about the correct polarity of the feedback. The
wrong polarity causes the motor to run away from the starting position. Using a
terminal program, such as DMCTERM, the following parameters can be given to
avoid system damage:

 Input the commands:

 ER 2000 <CR> Sets error limit on the X axis to be 2000 encoder counts

 OE 1 <CR> Disables X axis amplifier when a excess position error exists

 If the motor runs away and creates a position error of 2000 counts, the motor
amplifier will be disabled. Note: This function requires the AEN signal to be
connected from the controller to the amplifier.

Step C. Set Torque Limit as a Safety Precaution

 To limit the maximum voltage signal to your amplifier, the DMC 1300 controller
has a torque limit command, TL. This command sets the maximum voltage output
of the controller and can be used to avoid excessive torque or speed when
initially setting up a servo system.

 When operating an amplifier in torque mode, the voltage output of the controller
will be directly related to the torque output of the motor. The user is responsible
for determining this relationship using the documentation of the motor and
amplifier. The torque limit can be set to a value that will limit the motors output
torque.

 When operating an amplifier in velocity or voltage mode, the voltage output of
the controller will be directly related to the velocity of the motor. The user is
responsible for determining this relationship using the documentation of the
motor and amplifier. The torque limit can be set to a value that will limit the speed
of the motor.

 For example, the following command will limit the output of the controller to 1
volt on the X axis:

 TL 1 <CR>

Note: Once the correct polarity of the feedback loop has been determined, the torque
limit should, in general, be increased to the default value of 9.99. The servo will
not operate properly if the torque limit is below the normal operating range. See
description of TL in the command reference.

Step D. Connect the Motor

 Once the parameters have been set, connect the analog motor command signal
(ACMD) to the amplifier input.

 To test the polarity of the feedback, command a move with the instruction:

 PR 1000 <CR> Position relative 1000 counts

 BGX <CR> Begin motion on X axis

 When the polarity of the feedback is wrong, the motor will attempt to run away.
The controller should disable the motor when the position error exceeds 2000
counts. If the motor runs away, the polarity of the loop must be inverted.

DMC1000 Chapter 2 Getting Started •• 2 - 14

Note: Inverting the Loop Polarity

 When the polarity of the feedback is incorrect, the user must invert the loop
polarity and this may be accomplished by several methods. If you are driving a
brush-type DC motor, the simplest way is to invert the two motor wires (typically
red and black). For example, switch the M1 and M2 connections going from your
amplifier to the motor. When driving a brushless motor, the polarity reversal may
be done with the encoder. If you are using a single-ended encoder, interchange
the signal CHA and CHB. If, on the other hand, you are using a differential
encoder, interchange only CHA+ and CHA-. The loop polarity and encoder
polarity can also be affected through software with the MT, and CE commands.
For more details on the MT command or the CE command, see the Command
Reference section.

Note: Reversing the Direction of Motion

 If the feedback polarity is correct but the direction of motion is opposite to the
desired direction of motion, reverse the motor leads AND the encoder signals.

When the position loop has been closed with the correct polarity, the next step is to adjust the PID filter
parameters, KP, KD and KI. It is necessary to accurately tune your servo system to ensure fidelity of
position and minimize motion oscillation as described in the next section.

 W
 E

n
co

d
e

r
 Z

 E
n

co
d

e
r

Y
 E

n
co

d
e

r
X

 E
n

co
d

e
r

Pin 1

Pin 2 Screw Terminals

+ (Typically Red Connector)

red wire

black wire

+

-
CPS Power Supply

Encoder Ribbon Cable

ICM-1100

J2J3J5J4

Galil
DC Servo Motor

- (Typically Black Connector)

E
n

co
d

e
r

Figure 2 -2 - System Connections with the AMP-1100Amplifier. Note: this figure shows a Galil Motor
and Encoder which uses a flat ribbon cable to connect to the AMP-1100 unit.

DMC1000 Chapter 2 Getting Started •• 2 - 15

 W
 E

nc
od

er
 Z

 E
nc

od
er

Y
 E

nc
od

er
X

 E
nc

od
er

Pin 1

Pin 2 Screw Terminals

DC Servo Motor

- (Typically Black Connector)

+ (Typically Red Connector)

red wire

black wire

+

-
CPS Power Supply

G
N

D
A

C
M

D
X

Encoder Wires

GND (104)
XI- (82)

XB+ (79)

XA+ (77) XA- (78)
XB- (80)

XI+ (81)

+5V (103)Encoder Wire Connections
Encoder: ICM-1100:
Channel A(+) XA+
Channel B(+) XB+
Channel A- XA-
Channel B- XB-
Index Pulse XI+
Index Pulse - XI-

ICM-1100

J2J3J5J4

E
n

co
d

e
r

A
E

N
X

S
ig

na
l G

nd
 2

MSA 12-80

M
ot

or
 -

2

M
ot

or
 +

1

H
ig

h
 V

o
lt

 5

P
ow

er
 G

nd

4

+R
ef

 In
 4

In
hi

bi
t*

 1
1

Figure 2 -3 System Connections with a separate amplifier (MSA 12-80). This diagram shows the
connections for a standard DC Servo Motor and encoder.

Step 6b. Connect Step Motors
In Stepper Motor operation, the pulse output signal has a 50% duty cycle. Step motors operate open
loop and do not require encoder feedback. When a stepper is used, the auxiliary encoder for the
corresponding axis is unavailable for an external connection. If an encoder is used for position
feedback, connect the encoder to the main encoder input corresponding to that axis. The commanded
position of the stepper can be interrogated with RP or DE. The encoder position can be interrogated
with TP.

The frequency of the step motor pulses can be smoothed with the filter parameter, KS. The KS
parameter has a range between 0.5 and 8, where 8 implies the largest amount of smoothing. See
Command Reference regarding KS.

The DMC 1300 profiler commands the step motor amplifier. All DMC 1300 motion commands apply
such as PR, PA, VP, CR and JG. The acceleration, acceleration, slew speed and smoothing are also

DMC1000 Chapter 2 Getting Started •• 2 - 16

used. Since step motors run open-loop, the PID filter does not function and the position error is not
generated.

To connect step motors with the DMC 1300 you must follow this procedure:

Step A. Install SM jumpers

 Each axis of the DMC 1300 that will operate a stepper motor must have the
corresponding stepper motor jumper installed. For a discussion of SM jumpers,
see step 2.

Step B. Connect step and direction signals.

 Make connections from controller to motor amplifiers. (These signals are labeled
PULSX and DIRX for the x-axis on the ICM-1100). Consult the documentation
for your step motor amplifier.

Step C. Configure DMC 1300 for motor type using MT command. You can configure
the DMC 1300 for active high or active low pulses. Use the command MT 2 for
active high step motor pulses and MT -2 for active low step motor pulses. See
description of the MT command in the Command Reference.

Step 7. Tune the Servo System
Adjusting the tuning parameters for the servo motors is required when using servo motors. The system
compensation provides fast and accurate response by adjusting the filter parameters. The following
presentation suggests a simple and easy way for compensation.

The filter has three parameters: the damping, KD; the proportional gain, KP; and the integrator, KI. The
parameters should be selected in this order.

To start, set the integrator to zero with the instruction

 KI 0 (CR) Integrator gain

and set the proportional gain to a low value, such as

 KP 1 (CR) Proportional gain

 KD 100 (CR) Derivative gain

For more damping, you can increase KD (maximum is 4095). Increase gradually and stop after the motor
vibrates. A vibration is noticed by audible sound or by interrogation. If you send the command

 TE X (CR) Tell error

a few times, and get varying responses, especially with reversing polarity, it indicates system vibration.
When this happens, simply reduce KD.

Next you need to increase the value of KP gradually (maximum allowed is 1023). You can monitor the
improvement in the response with the Tell Error instruction

 KP 10 (CR) Proportion gain

 TE X (CR) Tell error

As the proportional gain is increased, the error decreases.

Again, the system may vibrate if the gain is too high. In this case, reduce KP. Typically, KP should not
be greater than KD/4. (Only when the amplifier is configured in the current mode).

Finally, to select KI, start with zero value and increase it gradually. The integrator eliminates the
position error, resulting in improved accuracy. Therefore, the response to the instruction

DMC1000 Chapter 2 Getting Started •• 2 - 17

 TE X (CR)

becomes zero. As KI is increased, its effect is amplified and it may lead to vibrations. If this occurs,
simply reduce KI. Repeat tuning for the Y, Z and W axes.

For a more detailed description of the operation of the PID filter and/or servo system theory, see
Chapter 10 - Theory of Operation.

Design Examples
Here are a few examples for tuning and using your controller. These examples have remarks next to
each command - these remarks must not be included in the actual program.

Example 1 - System Set-up
This example assigns the system filter parameters, error limits and enables the automatic error shut-off.

INSTRUCTION INTERPRETATION

KP10,10,10,10,10,10,10,10 Set gains for a,b,c,d,e,f,g,and h axes

KP10,10,10,10,10,10,10,10 Set gains for a,b,c,d,e,f,g,and h axes

KP*=10 Alternate method for setting gain on all axes

KPX=10 Alternate method for setting X (or A) axis gain

KPA=10 Alternate method for setting A (or X) axis gain

1380

When using controllers with 5 or more axes, the X,Y,Z and W axes can also be referred to as the
A,B,C,D axes.

INSTRUCTION INTERPRETATION

OE 1,1,1,1,1,1,1,1 Enable automatic Off on Error function for all axes

ER*=1000 Set error limit for all axes to 1000 counts

KP10,10,10,10,10,10,10,10 Set gains for a,b,c,d,e,f,g,and h axes

KP*=10 Alternate method for setting gain on all axes

KPX=10 Alternate method for s etting X (or A) axis gain

KPA=10 Alternate method for setting A (or X) axis gain

KPZ=10 Alternate method for setting Z axis gain

KPD=10 Alternate method for setting D axis gain

KPH=10 Alternate method for setting H axis gain

Example 2 - Profiled Move
Objective: Rotate the X axis a distance of 10,000 counts at a slew speed of 20,000 counts/sec and an
acceleration and deceleration rates of 100,000 counts/s2. In this example, the motor turns and stops:

INSTRUCTION INTERPRETATION

PR 10000 Distance

DMC1000 Chapter 2 Getting Started •• 2 - 18

SP 20000 Speed

DC 100000 Deceleration

AC 100000 Acceleration

BG X Start Motion

Example 3 - Multiple Axes
Objective: Move the four axes independently.

INSTRUCTION INTERPRETATION

PR 500,1000,600,-400 Distances of X,Y,Z,W

SP 10000,12000,20000,10000 Slew speeds of X,Y,Z,W

AC 100000,10000,100000,100000 Accelerations of X,Y,Z,W

DC 80000,40000,30000,50000 Decelerations of X,Y,Z,W

BG XZ Start X and Z motion

BG YW Start Y and W motion

Example 4 - Independent Moves
The motion parameters may be specified independently as illustrated below.

INSTRUCTION INTERPRETATION

PR ,300,-600 Distances of Y and Z

SP ,2000 Slew speed of Y

DC ,80000 Deceleration of Y

AC, 100000 Acceleration of Y

SP ,,40000 Slew speed of Z

AC ,,100000 Acceleration of Z

DC ,,150000 Deceleration of Z

BG Z Start Z motion

BG Y Start Y motion

Example 5 - Position Interrogation
The position of the four axes may be interrogated with the instruction, TP.

INSTRUCTION INTERPRETATION

TP Tell position all four axes

TP X Tell position - X axis only

TP Y Tell position - Y axis only

TP Z Tell position - Z axis only

DMC1000 Chapter 2 Getting Started •• 2 - 19

TP W Tell position - W axis only

The position error, which is the difference between the commanded position and the actual position can
be interrogated with the instruction TE.

INSTRUCTION INTERPRETATION

TE Tell error - all axes

TE X Tell error - X axis only

TE Y Tell error - Y axis only

TE Z Tell error - Z axis only

TE W Tell error - W axis only

Example 6 - Absolute Position
Objective: Command motion by specifying the absolute position.

INSTRUCTION INTERPRETATION

DP 0,2000 Define the current positions of X,Y as 0 and 2000

PA 7000,4000 Sets the desired absolute positions

BG X Start X motion

BG Y Start Y motion

After both motions are complete, the X and Y axes can be command back to zero:

PA 0,0 Move to 0,0

BG XY Start both motions

Example 7 - Velocity Control
Objective: Drive the X and Y motors at specified speeds.

INSTRUCTION INTERPRETATION

JG 10000,-20000 Set Jog Speeds and Directions

AC 100000, 40000 Set accelerations

DC 50000,50000 Set decelerations

BG XY Start motion

after a few seconds, send the following command:

JG -40000 New X speed and Direction

TV X Returns X speed

and then

JG ,20000 New Y speed

DMC1000 Chapter 2 Getting Started •• 2 - 20

TV Y Returns Y speed

These cause velocity changes including direction reversal. The motion can be stopped with the
instruction

ST Stop

Example 8 - Operation Under Torque Limit
The magnitude of the motor command may be limited independently by the instruction TL.

INSTRUCTION INTERPRETATION

TL 0.2 Set output limit of X axis to 0.2 volts

JG 10000 Set X speed

BG X Start X motion

In this example, the X motor will probably not move since the output signal will not be sufficient to
overcome the friction. If the motion starts, it can be stopped easily by a touch of a finger.

Increase the torque level gradually by instructions such as

INSTRUCTION INTERPRETATION

TL 1.0 Increase t orque limit to 1 volt.

TL 9.98 Increase torque limit to maximum, 9.98 Volts.

The maximum level of 10 volts provides the full output torque.

Example 9 - Interrogation
The values of the parameters may be interrogated. Some examples …

INSTRUCTION INTERPRETATION

KP ? Return gain of X axis.

KP ,,? Return gain of Z axis.

KP ?,?,?,? Return gains of all axes.

Many other parameters such as KI, KD, FA, can also be interrogated. The command reference denotes
all commands which can be interrogated.

Example 10 - Operation in the Buffer Mode
The instructions may be buffered before execution as shown below.

INSTRUCTION INTERPRETATION

PR 600000 Distance

SP 10000 Speed

WT 10000 Wait 10000 milliseconds before reading the next instruction

BG X Start the motion

DMC1000 Chapter 2 Getting Started •• 2 - 21

Example 11 - Motion Programs
Motion programs may be edited and stored in the controllers on-board memory.

The instruction

ED Edit mode

moves the operation to the editor mode where the program may be written and edited. The editor
provides the line number. For example, in response to the first ED command, the first line is zero.

LINE # INSTRUCTION INTERPRETATION

000 #A Define label

001 PR 700 Distance

002 SP 2000 Speed

003 BGX Start X motion

004 EN End program

To exit the editor mode, input <cntrl>Q. The program may be executed with the command.

XQ #A Start the program running

Example 12 - Motion Programs with Loops
Motion programs may include conditional jumps as shown below.

INSTRUCTION INTERPRETATION

#A Label

DP 0 Define current position as zero

V1=1000 Set initial value of V1

#Loop Label for loop

PA V1 Move X motor V1 counts

BG X Start X motion

AM X After X motion is complete

WT 500 Wait 500 ms

TP X Tell position X

V1=V1+1000 Increase the value of V1

JP #Loop,V1<10001 Repeat if V1<10001

EN End

After the above program is entered, quit the Editor Mode, <cntrl>Q. To start the motion, command:

XQ #A Execute Program #A

Example 13 - Motion Programs with Trippoints
The motion programs may include trippoints as shown below.

INSTRUCTION INTERPRETATION

DMC1000 Chapter 2 Getting Started •• 2 - 22

#B Label

DP 0,0 Define initial positions

PR 30000,60000 Set targets

SP 5000,5000 Set speeds

BGX Start X motion

AD 4000 Wait until X moved 4000

BGY Start Y motion

AP 6000 Wait until position X=6000

SP 2000,50000 Change speeds

AP ,50000 Wait until position Y=50000

SP ,10000 Change speed of Y

EN End program

To start the program, command:

XQ #B Execute Program #B

Example 14 - Control Variables
Objective: To show how control variables may be utilized.

INSTRUCTION INTERPRETATION

#A;DP0 Label; Define current position as zero

PR 4000 Initial position

SP 2000 Set speed

BGX Move X

AMX Wait until move is complete

WT 500 Wait 500 ms

#B

V1 = _TPX Determine distance to zero

PR -V1/2 Command X move 1/2 the distance

BGX Start X motion

AMX After X moved

WT 500 Wait 500 ms

V1= Report the value of V1

JP #C, V1=0 Exit if position=0

JP #B Repeat otherwise

#C Label #C

EN End of Program

To start the program, command

XQ #A Execute Program #A

DMC1000 Chapter 2 Getting Started •• 2 - 23

This program mo ves X to an initial position of 1000 and returns it to zero on increments of half the
distance. Note, _TPX is an internal variable which returns the value of the X position. Internal
variables may be created by preceding a DMC 1300 instruction with an underscore, _.

Example 15 - Linear Interpolation
Objective: Move X,Y,Z motors distance of 7000,3000,6000, respectively, along linear trajectory.
Namely, motors start and stop together.

INSTRUCTION INTERPRETATION

LM XYZ Specify linear interpolation axes

LI 7000,3000,6000 Relative distances for linear interpolation

LE Linear End

VS 6000 Vector speed

VA 20000 Vector acceleration

VD 20000 Vector deceleration

BGS Start motion

DMC1000 Chapter 2 Getting Started •• 2 - 24

Example 16 - Circular Interpolation
Objective: Move the XY axes in circular mode to form the path shown on Fig. 2-4. Note that the vector
motion starts at a local position (0,0) which is defined at the beginning of any vector motion sequence.
See application programming for further information.

INSTRUCTION INTERPRETATION

VM XY Select XY axes for circular interpolation

VP -4000,0 Linear segment

CR 2000,270,-180 Circular segment

VP 0,4000 Linear segment

CR 2000,90,-180 Circular segment

VS 1000 Vector speed

VA 50000 Vector acceleration

VD 50000 Vector deceleration

VE End vector sequence

BGS Start motion

X

Y

R=2000

(0,0) local zero(-4000,0)

(-4000,4000) (0,4000)

Figure 2 -4 Motion Path for Example 16

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 25

Chapter 3 Connecting Hardware

Overview
The DMC 1300 provides optoisolated digital inputs for forward limit, reverse limit, home, and abort
signals. The controller also has 8 optoisolated, uncommitted inputs (for general use) as well as 8 TTL
outputs and 7 analog inputs configured for voltages between +/- 10 volts.

1380
Controllers with 5 or more axes have an additional 16 TTL level inputs and 8 TTL level outputs.

This chapter describes the inputs and outputs and their proper connection.

To access the analog inputs or general inputs 5-8 or all outputs except OUT1, connect the 26-pin ribbon
cable to the 26-pin J5 IDC connector from the DMC 1300 to the AMP-11X0 or ICM-1100 board.

If you plan to use the auxiliary encoder feature of the DMC 1300, you must also connect a 20-pin ribbon
cable from the 20-pin J3 header connector on the DMC 1300 to the 26-pin J3 header connector on the
AMP-11X0 or ICM-1100. This cable is not shipped unless requested when ordering.

Using Optoisolated Inputs

Limit Switch Input
The forward limit switch (FLSx) inhibits motion in the forward direction immediately upon activation of
the switch. The reverse limit switch (RLSx) inhibits motion in the reverse direction immediately upon
activation of the switch. If a limit switch is activated during motion, the controller will make a
decelerated stop using the deceleration rate previously set with the DC command. The motor will
remain in a servo state after the limit switch has been activated and will hold motor position.

When a forward or reverse limit switch is activated, the current application program that is running will
be interrupted and the controller will automatically jump to the #LIMSWI subroutine if one exists. This
is a subroutine which the user can include in any motion control program and is useful for executing
specific instructions upon activation of a limit switch.

After a limit switch has been activated, further motion in the direction of the limit switch will not be
possible until the logic state of the switch returns back to an inactive state. This usually involves
physically opening the tripped switch. Any attempt at further motion before the logic state has been
reset will result in the following error: “022 - Begin not possible due to limit switch” error.

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 26

The operands, _LFx and _LRx, return the state of the forward and reverse limit switches, respectively (x
represents the axis, X,Y,Z,W etc.). The value of the operand is either a ‘0’ or ‘1’ corresponding to the
logic state of the limit switch. Using a terminal program, the state of a limit switch can be printed to the
screen with the command, MG _LFx or MG _LFx. This prints the value of the limit switch operands for
the 'x' axis. The logic state of the limit switches can also be interrogated with the TS command. For
more details on TS see the Command Reference.

The state of the forward and reverse limit switches can also be read directly through the Dual Port
RAM. Bit 3 of the Switches address in the Axis Buffer indicates the status of the forward limit switch
on an axis, while Bit 2 of that address indicates the status of the reverse limit switch. For example, the
forward limit switch for the DMC 1340 X-axis is read at Bit 3 of address 105, while the reverse limit
switch for the DMC 1380 X-Axis is read at Bit 2 of address 205.

Home Switch Input
The Home inputs are designed to provide mechanical reference points for a motion control application.
A transition in the state of a Home input alerts the controller that a particular reference point has been
reached by a moving part in the motion control system. A reference point can be a point in space or an
encoder index pulse.

The Home input detects any transition in the state of the switch and toggles between logic states 0 and
1 at every transition. A transition in the logic state of the Home input will cause the controller to
execute a homing routine specified by the user.

There are three homing routines supported by the DMC 1300: Find Edge (FE), Find Index (FI), and
Standard Home (HM).

The Find Edge routine is initiated by the command sequence: FEX <return>, BGX <return>. The Find
Edge routine will cause the motor to accelerate, then slew at constant speed until a transition is
detected in the logic state of the Home input. The motor will then decelerate to a stop. The acceleration
rate, deceleration rate and slew speed are specified by the user, prior to the movement, using the
commands AC, DC, and SP. It is recommended that a high deceleration value be used so the motor
will decelerate rapidly after sensing the Home switch.

The Find Index routine is initiated by the command sequence: FIX <return>, BGX <return>. Find Index
will cause the motor to accelerate to the user-defined slew speed (SP) at a rate specified by the user with
the AC command and slew until the controller senses a change in the index pulse signal from low to
high. The motor then decelerates to a stop at the rate previously specified by the user with the DC
command. Although Find Index is an option for homing, it is not dependent upon a transition in the
logic state of the Home input, but instead is dependent upon a transition in the level of the index
pulse signal.

The Standard Homing routine is initiated by the sequence of commands HMX <return>, BGX <return>.
Standard Homing is a combination of Find Edge and Find Index homing. Initiating the standard homing
routine will cause the motor to slew until a transition is detected in the logic state of the Home input.
The motor will accelerate at the rate specified by the command, AC, up to the slew speed. After
detecting the transition in the logic state on the Home Input, the motor will decelerate to a stop at the
rate specified by the command, DC. After the motor has decelerated to a stop, it switches direction and
approaches the transition point at the speed of 256 counts/sec. When the logic state changes again,
the motor moves forward (in the direction of increasing encoder count) at the same speed, until the
controller senses the index pulse. After detection, it decelerates to a stop and defines this position as 0.
The logic state of the Home input can be interrogated with the command MG _HMX. This command
returns a 0 or 1 if the logic state is low or high, respectively. The state of the Home input can also be
interrogated indirectly with the TS command.

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 27

The status of the Home Switch can also be read through the Dual Port RAM. Bits 1, 2 and 3 of the
Status #1 address in the Axis Buffer gives the state of the HM command. Bit 1 shows when home has
been found, Bit 2 shows when the 1st phase of the homing routine has completed, and Bit 3 shows when
the 2nd phase of the homing routine has completed. For example, a 1 at Bit 2 of address 240 on a DMC
1380 indicates that the 1st phase of homing on the Y-axis has completed.

For examples and further information about Homing, see command HM, FI, FE of the Command
Reference and the section entitled ‘Homing’ in the Programming Motion Section of this manual.

Abort Input
The function of the Abort input is to immediately stop the controller upon transition of the logic state.

NOTE: The response of the abort input is significantly different from the response of an activated limit
switch. When the abort input is activated, the controller stops generating motion commands
immediately, whereas the limit switch response causes the controller to make a decelerated stop.

NOTE: The effect of an Abort input is dependent on the state of the off-on-error function for each axis.
If the Off-On-Error function is enabled for any given axis, the motor for that axis will be turned off when
the abort signal is generated. This could cause the motor to ‘coast’ to a stop since it is no longer under
servo control. If the Off-On-Error function is disabled, the motor will decelerate to a stop as fast as
mechanically possible and the motor will remain in a servo state.

All motion programs that are currently running are terminated when a transition in the Abort input is
detected. For information on setting the Off-On-Error function, see the Command Reference, OE.

NOTE: The error LED does not light up when the Abort Input is active.

Uncommitted Digital Inputs
The DMC 1300 has 8 uncommitted opto-isolated inputs. These inputs are specified as INx where x
specifies the input number, 1 through 24. These inputs allow the user to monitor events external to the
controller. For example, the user may wish to have the x-axis motor move 1000 counts in the positive
direction when the logic state of IN1 goes high.

1380
Controllers with 5 or more axes have 16 opto-isolated inputs and 8 TTL level inputs. .

The inputs 9-16 and the limit switch inputs for the additional axes are accessed through the second 26-
pin connector, JD 5.

The status of the general purpose inputs can be read in the General Registers of the Dual Port RAM.
Address 02A on the DMC 1310/1340 shows the status of the 8 general purpose inputs, while addresses
02A - 02C of the DMC 1350/1380 show the status of the 24 general purpose inputs.

Wiring the Optoisolated Inputs
The default state of the controller configures all inputs to be interpreted as a logic one without any
connection. The inputs must be brought low to be interpreted as a zero. With regard to limit switches,
a limit switch is considered to be activated when the input is brought low (or a switch is closed to
ground). Some inputs can be configured to be active when the input is high - see section Changing
Optoisolated Inputs from Active High to Active Low.

The optoisolated inputs are organized into groups. For example, the general inputs, IN1-IN8, and the
ABORT input are one group. Each group has a common signal which supplies current for the inputs in
the group. In order to use an input, the associated common signal must be connected to voltage
between +5 and +28 volts, see discussion below.

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 28

The optoisolated inputs are connected in the following groups (these inputs are accessed through the
26-pin J5 header).

Group Common Signal

IN1-IN8, ABORT INCOM

FLX,RLX,HOMEX

FLY,RLY,HOMEY

FLZ,RLZ,HOMEZ

FLW,RLW,HOMEW

LSCOM

1380
For controllers with more than 4 axes, the inputs 9-16 and the limit switch inputs for the additional axes
are accessed through a separate connector, JD5.

Group Common Signal

IN9-IN16 INCOM

FLE,RLE,HOMEE

FLF,RLF,HOMEF

FLG,RLG,HOMEG

FLH,RLH,HOMEH

LSCOM

A logic zero is generated when at least 1mA of current flows from the common signal to the input. A
positive voltage (with respect to the input) must be supplied at the common. This can be accomplished
by connecting a voltage in the range of +5V to +28V into INCOM of the input circuitry from a separate
power supply

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 29

LSCOM

FLSX

RLSX

HOMEX
FLSY

RLSY
HOMEY

INCOM

IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 ABORT

Figure 3 -1. The Optoisolated Inputs

Using an Isolated Power Supply
To take full advantage of opto-isolation, an isolated power supply should be used to provide the
voltage at the input common connection. When using an isolated power supply, do not connect the
ground of the isolated power to the ground of the controller. A power supply in the voltage range
between 5 to 28 Volts may be applied directly (see Figure 3-2). For voltages greater than 28 Volts, a
resistor, R, is needed in series with the input such that

 1 mA < V supply/(R + 2.2KΩ) < 15 mA

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 30

f

(For Voltages > +28V)

Isolated
Supply

FLS

2.2K

LSCOM

Figure 3 -2. Connecting a single Limit or Home Switch to an Isolated Supply

NOTE: As stated in Chapter 2, the wiring is simplified when using the ICM-1100 or AMP-11x0 interface
board. This board accepts the signals from the ribbon cables of the DMC 1300 and provides phoenix-
type screw terminals. A picture of the ICM-1100 can be seen on pg. 2-14. The user must wire the
system directly off the ribbon cable if the ICM-1100 or equivalent breakout board is not available.

Bypassing the Opto-Isolation:
If no isolation is needed, the internal 5 Volt supply may be used to power the switches, as shown in
Figure 3-3. This can be done by connecting a jumper between the pins LSCOM or INCOM and 5V,
labeled J9. These jumpers can be added on either the ICM-1100 or the DMC 1300. This can also be
done by connecting wires between the 5V supply and common signals using the screw terminals on the
ICM-1100 or AMP-11x0.

To close the circuit, wire the desired input to any ground (GND) terminal.

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 31

FLS

LSCOM
SCOM

GND

5V

Figure 3 -3 - Connecting Limit switches to the internal 5V supply

Changing Optoisolated Inputs From Active Low to Active
High
Some users may prefer that the optoisolated inputs be active high. For example, the user may wish to
have the inputs be activated with a logic one signal. The limit, home and latch inputs can be configured
through software to be active high or low with the CN command. For more details on the CN see
Command Reference manual.

The Abort input cannot be configured in this manner.

Amplifier Interface
The DMC 1300 analog command voltage, ACMD, ranges between +/-10V. This signal, along with GND,
provides the input to the power amplifiers. The power amplifiers must be sized to drive the motors and
load. For best performance, the amplifiers should be configured for a current mode of operation with no
additional compensation. The gain should be set such that a 10 Volt input results in the maximum
required current.

The DMC 1300 also provides an amplifier enable signal, AEN. This signal changes under the following
conditions: the watchdog timer activates, the motor-off command, MO, is given, or the OE1command
(Enable Off-On-Error) is given and the position error exceeds the error limit. As shown in Figure 3-4,
AEN can be used to disable the amplifier for these conditions.

The standard configuration of the AEN signal is TTL active high. In other words, the AEN signal will
be high when the controller expects the amplifier to be enabled. The polarity and the amplitude can be
changed if you are using the ICM-1100 interface board. To change the polarity from active high (5 volts

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 32

= enable, zero volts = disable) to active low (zero volts = enable, 5 volts= disable), replace the 7407 IC
with a 7406. Note that many amplifiers designate the enable input as ‘inhibit’.

To change the voltage level of the AEN signal, note the state of the resistor pack on the ICM-1100.
When Pin 1 is on the 5V mark, the output voltage is 0-5V. To change to 12 volts, pull the resistor pack
and rotate it so that Pin 1 is on the 12 volt side. If you remove the resistor pack, the output signal is an
open collector, allowing the user to connect an external supply with voltages up to 24V.

100-PIN
RIBBON

ACMDX

AMPENX

GND

ICM-1100DMC-1300

+5V+12V

SERVO
MOTOR

AMPLIFIER

7407 Open Collector
Buffer. The Enable signal

can be inverted by using
a 7406.

Analog Switch

Connection to +5V or +12V made through
Resistor pack RP1. Removing the resistor
pack allows the user to connect their own
resistor to the desired voltage level (Up
to24V).

Figure 3 -4 - Connecting AEN to the motor amplifier

TTL Inputs
1380

As previously mentioned, the DMC 1300 has 16 additional uncommitted TTL level inputs for controllers
with 5 or more axes. These are specified as INx where x ranges from 9 thru 24. The reset input is also a
TTL level, non-isolated signal and is used to locally reset the DMC 1300 without resetting the PC.

Analog Inputs
The DMC 1300 has seven analog inputs configured for the range between -10V and 10V. The inputs are
decoded by a 12-bit A/D converter giving a voltage resolution of approximately .005V. The impedance
of these inputs is 10 KΩ . The analog inputs are specified as AN[x] where x is a number 1 thru 7. Galil
can supply the DMC 1300 with a 16-bit A/D converter as an option.

DMC 1300 Chapter 3 Connecting •• Error! Main Document Only. - 33

TTL Outputs
The DMC 1300 provides eight general use outputs and an error signal output.

The general use outputs are TTL and are accessible by connections to OUT1 thru OUT8. These
outputs can be turned On and Off with the commands, SB (Set Bit), CB (Clear Bit), OB (Output Bit), and
OP (Output Port). For more information about these commands, see the Command Summary. The value
of the outputs can be checked with the operand _OP and the function @OUT[] (see Chapter 7,
Mathematical Functions and Expressions).

1380
Controllers with 5 or more axes have an additional eight general use TTL outputs (connector JD5).

The status of the general purpose outputs can be read in the General Registers of the Dual Port RAM.
Address 02B on the DMC 1310/1340 shows the status of the 8 general purpose outputs, while
addresses 02E and 02F of the DMC 1350/1380 show the status of the 16 general purpose outputs.

The error signal output is available on the main connector (J2, pin 3). This is a TTL signal which is low
when the controller has an error. This signal is not available through the phoenix connectors of the
ICM-1100.

Note: When the error signal is active, the LED on the controller will be on. An error condition indicates
one of the following conditions:

1. At least one axis has a position error greater than the error limit. The error limit is set by using the
command ER.

2. The reset line on the controller is held low or is being affected by noise.

3. There is a failure on the controller and the processor is resetting itself.

4. There is a failure with the output IC which drives the error signal.

Offset Adjustment
For each axis, the DMC 1300 provides offset correction potentiometers to compensate for any offset in
the analog output. These potentiometers have been adjusted at the factory to produce 0 Volts output
for a zero digital motor command. Before making any adjustment to the offset, send the motor off
command, MO, to the DMC 1300. This causes a zero digital motor command. Connect an oscilloscope
or voltmeter to the motor command pin. You should measure zero volts. If not, adjust the offset
potentiometer on the DMC 1300 until zero volts is observed.

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 35

Chapter 4 VME Communication

Introduction
The DMC-1300 utilizes a Dual Port RAM communication system. The DMC-1300 occupies 2K of the
65K available in the short I/O space. Either supervisory or user modes are permitted. To address this
space, the address modifier lines of the VME Bus must be set to the following:

AM5 AM4 AM3 AM2 AM1 AM0

1 0 1 X 0 1

Please consult your VME CPU’s user manual for more specific information on the proper configuration
of address modifiers.

The DMC-1300 provides 4 address jumpers, labeled A15 through A12, where A15 represents the MSB
of the address or 215. Bits 20 through 211 are all zero. The address jumpers A15 through A12 are
configured for the desired address. A jumper present is a zero, a jumper missing sets the bit to a one.
For the following example, R = Jumper removed and J = Jumper present.

A15 A14 A13 A12

R J J J

1 0 0 0

This results in a base address of 8000 hex. The default address for the DMC-1300 is no jumpers
present, or F000 hex.

RAM Organization
All addresses in the communication section will be in hex and be an offset from the base address (set by
jumpers). This section will also show address locations for two versions of the controller, one for the
DMC-1310/1340 and the other for the DMC-1350/1380.

The dual-port RAM of the DMC-1300 is organized into 12 buffers. Those buffer locations are listed
below:

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 36

DMC-1310/1340

Address Description

000 - 00F Semaphore Registers

010 - 03F General Registers

040 - 06F Command Registers

070 - 09F Response Buffer

0A0 - 0B1 Contour Buffer

0BE - 0E7 Program Buffer

100 - 13F X axis

140 - 17F Y axis

180 - 1BF Z axis

1C0 - 1FF W axis

200 - 23F Coordinated Axis - S

240 - 3BF Variables

DMC-1350/1380

Address Description

000 - 00F Semaphore Registers

010 - 03F General Registers

040 - 073 Command Buffer

090 - 0C3 Response Buffer

0E0 - 101 Contour Buffer

10E - 15F Program Buffer

200 - 23F X axis

240 - 27F Y axis

280 - 2BF Z axis

2C0 - 2FF W axis

300 - 33F E axis

340 - 37F F axis

380 - 3BF G axis

3C0 - 3FF H axis

400 - 43F Coordinated Axis - S

440 - 5BF Variables

Each of these registers and buffers will be described in detail in the following sections.

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 37

Semaphore Registers
DMC 1310/1380 Address 000 - 00F

The semaphore registers control signals for communication timing between the host CPU and the DMC-
1300. These semaphore registers are set and cleared by either the host CPU or the DMC-1300. They are
addressed only by their most significant bit (Bit 7), with the exception of the Program Buffer semaphore.
Bit 6 of that semaphore is also set if an application program line is in the program buffer, and is cleared if
the buffer contains communication from the application program. Below are the addresses and
functions of each of the semaphore registers. These are identical for both the DMC-1310/1340 and the
DMC-1350/1380.

Address Function Bit 7 Set by Bit 7 Cleared by

001 Command Buffer Host DMC-1300

003 Response Buffer DMC-1300 Host

005 Contour Buffer Host DMC-1300

007 Freeze Updates Host Host

009 Updating DMC-1300 DMC-1300

00A Clear Trippoint Host DMC-1300

00B Program Buffer DMC-1300 Host

00C Thread 1 Paused DMC-1300 or Host Host

00D Thread 2 Paused DMC-1300 or Host Host

00E Thread 3 Paused DMC-1300 or Host Host

00F Thread 4 Paused DMC-1300 or Host Host

General Registers
DMC 1310/1340 Address 010 - 036

DMC 1350/1380 Address 010 - 03B

The General Registers contain information about the controller such as motion status, error status,
general I/O and interrupt status. Some of these registers are copies of internal DMC-1300 registers and
writing to them will have no effect. Other registers are the only representation, and writing to them
affects the internal status.

DMC-1310/1340

Address Register

010 General Status Bit 7 = Application Strand Executing
 Bit 6 = Trace On
 Bit 5 = Contour Mode
 Bit 4 = Edit Mode
 Bit 3 = Overflow in Program Buffer
 Bit 2 = Contour Error
 Bit 1 = Error in Application
Program Command Bit 0 = Error in
Command from Command Buffer

012 Command Buffer Error Code and Contour Mode Error Code

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 38

This byte contains the error code of the last error from a command buffer command.
The error code will remain valid until cleared by the host or another error occurs. A
list of error codes is listed in the TC command.

013 Application Program Error Code

This byte contains the error code of the last error from an application program
command. The error code will remain valid until cleared by the host or another error
occurs.

014 - 017 Sample Time

This 4-byte value contains a count of the samples since reset. It is the last item to
be updated during an update cycle and can therefore be used to determine whether
new axis data has been updated. NOTE: Writing in these locations has no effect.

018 - 019 Coordinated Move Segment Count

For coordinated moves, the 2-byte value shows which coordinated segment is being
run.

020 - 025 Firmware Revision

This 6-byte value shows the firmware revision of the controller.

026 Axis Number

This register contains the number of axis of the controller (1 - 4).

027 Analog Inputs

Contains 1 if Analog; 0 if No Analog

028 Program Buffer Control

This register chooses between three communication modes for the Application
Program Buffer. To select the mode, write its number to the register.

Mode 0 - If the Program Buffer is full and an application program needs to write to
the buffer, the new data will be lost.

Mode 1 - If the Program Buffer is full and an application program needs to write to
the buffer, application program execution will be held up until the buffer is clear and
no data will be lost.

Mode 2 - If the Program Buffer is full and an application program needs to write to
the buffer, the old data will be lost.

029 Number of Samples between Updates (divided by 2)

The default is 1 sample (2 msec). This register can be used to help a host create a
position history at a particular time interval.

02A Uncommitted Input Port

This is a copy of the uncommitted inputs I8 - I1, with I8 being Bit 7.

02B Uncommitted Output Port

This is a copy of the uncommitted outputs O8 - O1. Writing to this address will
change the state of the outputs on the following sample.

030 - 031 Interrupt Status

These registers state which event has caused the VME Bus interrupt. These

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 39

interrupts are set by the controller, and need to be cleared by the host after the
interrupt has been processed.
030 Bit 7 = Inputs
 Bit 6 = Command Done
 Bit 5 = Application program stopped
 Bit 4 = User Interrupt
 Bit 3 = Watchdog timer
 Bit 2 = Limit switch occurred
 Bit 1 = Excess position error
 Bit 0 = All axes motion complete
031 Bit 7 = Application program paused
 Bit 6 = Contour interrupt
 Bit 5 =
 Bit 4 =
 Bit 3 = W Axis Motion Complete
 Bit 2 = Z Axis Motion Complete
 Bit 1 = Y Axis Motion Complete
 Bit 0 = X Axis Motion Complete

032 Input Number

This register states which of the digital inputs caused an interrupt.

033 User Interrupt Number

This register states which user interrupt has been sent using the UI command.

034 - 035 Interrupt Mask

These two registers state which events will cause the VME bus to interrupt. The
conditions that cause the interrupt are selected with the EI command.
034 Bit 7 = Inputs
 Bit 6 = Command Done
 Bit 5 = Application program stopped
 Bit 4 =
 Bit 3 = Watchdog timer
 Bit 2 = Limit Switch occurred
 Bit 1 = Excess position error
 Bit 0 = Motion complete on all axes
035 Bit 7 =
 Bit 6 = Contour interrupt
 Bit 5 =
 Bit 4 =
 Bit 3 = W axis motion complete
 Bit 2 = Z axis Motion Complete
 Bit 1 = Y axis Motion Complete
 Bit 0 = X axis Motion Complete

036 Input Mask

This register shows which general inputs will cause a bus interrupt.

DMC 1350/1380

Address Register

010 General Status Bit 7 = Application Strand Executing
 Bit 6 = Trace On

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 40

 Bit 5 = Contour Mode
 Bit 4 = Edit Mode
 Bit 3 = Overflow in Program Buffer
 Bit 2 = Contour Error
 Bit 1 = Error in Application
Program Command Bit 0 = Error in
Command from Command Buffer

012 Command Buffer Error Code and Contour Mode Error Code

This byte contains the error code of the last error from a command buffer command.
The error code will remain valid until cleared by the host or another error occurs. A
list of error codes is listed in the TC command.

013 Application Program Error Code

This byte contains the error code of the last error from an application program
command. The error code will remain valid until cleared by the host or another error
occurs.

014 - 017 Sample Time

This 4-byte value contains a count of the samples since reset. It is the last item to
be updated during an update cycle and can therefore be used to determine whether
new axis data has been updated. NOTE: Writing in these locations has no effect.

018 - 019 Coordinated Move Segment Count

For coordinated moves, the 2-byte value shows which coordinated segment is being
run.

020 - 025 Firmware Revision

This 6-byte value shows the firmware revision of the controller.

026 Axis Number

This register contains the number of axis of the controller (1 - 8).

027 Analog Inputs

Contains 1 if Analog; 0 if No Analog

028 Program Buffer Control

This register chooses between three communication modes for the Application
Program Buffer. To select the mode, write its number to the register.

Mode 0 - If the Program Buffer is full and an application program needs to write to
the buffer, the new data will be lost.

Mode 1 - If the Program Buffer is full and an application program needs to write to
the buffer, application program execution will be held up until the buffer is clear and
no data will be lost.

Mode 2 - If the Program Buffer is full and an application program needs to write to
the buffer, the old data will be lost.

029 Number of Samples between Updates (divided by 2)

The default is 1 sample (2 msec). This register can be used to help a host create a
position history at a particular time interval.

02A - 02C Uncommitted Input Port

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 41

This is a copy of the uncommitted inputs I24 - I1. The locations are I8 - I1 at 02A,
I16 - I9 at 02B and I24 - I17 at 02C.

02E - 02F Uncommitted Output Port

This is a copy of the uncommitted outputs O16 - O1. Writing to this register will
change the outputs on the next sample. The locations are 016 - 09 at 02E and 08 - 01
at 02F.

030 - 033 Interrupt Status

These registers state which event has caused the VME Bus interrupt. These
interrupts are set by the controller, and need to be cleared by the host after the
interrupt has been processed.
030 Bit 6 = Command done
 Bit 5 = Application program stopped
 Bit 4 = User Interrupt
 Bit 3 = Watchdog timer
 Bit 2 = Limit switch occurred
 Bit 1 = Excess position error
 Bit 0 = Inputs

031 Bit 7 = Application program paused
 Bit 6 = Contour interrupt

032 Bit 0 = All axes motion complete

033 Bit 7 = H axis motion complete
 Bit 6 = G axis motion complete
 Bit 5 = F axis motion complete
 Bit 4 = E axis motion complete
 Bit 3 = W axis motion complete
 Bit 2 = Z axis motion complete
 Bit 1 = Y axis motion complete
 Bit 0 = X axis motion complete

034 Input Number

This address shows which general purpose input caused the interrupt.

035 User Interrupt Number

This address shows which user interrupt, sent by the UI command, caused the VME
interrupt.

036 - 039 Interrupt Mask

These two registers state which events will cause the VME bus to interrupt. The
conditions that cause the interrupt are selected with the EI command.
036 Bit 6 = Command done
 Bit 5 = Application program stopped
 Bit 4 =
 Bit 3 = Watchdog timer
 Bit 2 = Limit switch occurred
 Bit 1 = Excess position error
 Bit 0 = Inputs

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 42

037 Bit 7 =
 Bit 6 = Contour interrupt

038 Bit 0 = All axes motion complete

039 Bit 7 = H axis motion complete
 Bit 6 = G axis motion complete
 Bit 5 = F axis motion complete
 Bit 4 = E axis motion complete
 Bit 3 = W axis motion complete
 Bit 2 = Z axis motion complete
 Bit 1 = Y axis motion complete
 Bit 0 = X axis motion complete

03A - 03B Input Mask

This address shows which general purpose input will cause a bus interrupt.

Command Buffer
DMC 1310/1340 Addresses 040 - 059

DMC 1350/1380 Addresses 040 - 073

The command buffer is used by the host to send commands to the DMC-1300. These commands can be
sent in either Binary or ASCII format. A complete list of DMC commands in both Binary and ASCII
format can be found in Chapter 12. If the Bit 3 system is being used, commands may be sent directly
from the DMC terminal. Otherwise, commands will be written directly to the command buffer.

Sending commands using the Bit 3 System

Loading the Galil COMM1300 software gives the user a basic terminal emu lator and status screen. All
the basic commands of the controller can be sent to the command buffer from this screen. The
communication options available through this screen are accessed as follows:

 !UL <file name> Uploads file to PC from 1300

 !DO <file name> Downloads file from PC into 1300

!? Reports available screen and configuration options

!BI Selects binary mode of communication

!AS Selects ASCII mode of communication

!DE Selects decimal display option

!HE Selects hex display option

!W m,n Displays contents of address m, m+1, m+2, m+3 as a four
byte value. n is the watch number 1, 2 or 3. You can
watch up to three groups of data.

Example: !W 20,1 Watches address 20; #1

 !W 30,2 Watches address 30; #2

Q Quits the COMM1300

Sending commands to the Command Buffer

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 43

The procedure for sending a command to the DMC 1300, whether Binary or ASCII, is as follows:

1. Check that Bit 7 of the Command Semaphore register (001) is clear. This means the last
command has been completed.

2. Load the command into the command buffer in either Binary or ASCII.

3. Set Bit 7 (80 hex) of the command semaphore to start the command being processed.

4. Check that Bit 7 of the command semaphore is clear. Then check Bit 0 of the General
Status (010). If the value is a one, then the command was not accepted. The command
buffer error code will help find the cause of the problem.

5. If an interrogation command was sent, read the response buffer and clear the response
buffer semaphore register.

ASCII Commands

The DMC 1300 instructions are represented by two ASCII upper case characters followed by applicable
arguments. These arguments are of the form X, Y, Z and W for 1 through 4 axes and A, B, C, D, E, F, G
and H for 5 through 8 axes. The host loads the buffer with the proper ASCII values starting at Address
040. Every ASCII command must be terminated with a carriage return (0D hex). Only one command can
be sent at a time. Axis parameters in ASCII mode are separated by commas. If no data is specified for
an axis, a comma is still needed as shown in the examples below.

 KP12,8,,10,23 Set the proportional gain of the X axis to 12, Y axis to 8, W axis to
10 and E axis to 23.

 OF,23 Set the Y axis offset to 23.

 KD,,,,,100 Set the F axis derivative gain to 100.

Instead of data, some commands request action to occur on an axis or group of axes. For example,
STXY stops motion on both the X and Y axes. Commas are not required in this case since the particular
axis is specified by the appropriate letter. If no parameter follow the instruction, action will take place
on all axes. Here are some examples of syntax for requesting action.

 SHXW Perform the Servo Here function on the X and W axes.

 MO Turn the motors off on all axes.

 STG Stop motion on the G axis.

 BGAE Begin motion on the A and E axes.

When requesting action for coordinated motion, the letter S is used to specify the coordinated motion.
For example:

 BGS Begin coordinated sequence

 BGSW Begin coordinated

Below are two examples of sending ASCII commands to the DMC 1300, and their corresponding
addresses.

Example: Send the command STX in ASCII format.

 Address Value (hex) Characters
 40 53 S
 41 54 T
 42 58 X
 43 0D Return

Example: Send the command PR 1024,,2048 in ASCII format.

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 44

 Address Value (hex) Characters
 40 50 P
 41 52 R
 42 31 1
 43 30 0
 44 32 2
 45 34 4
 46 2C ,
 47 2C ,
 48 32 2
 49 30 0
 4A 34 4
 4B 38 8
 4C 0D Return

Binary Commands

Commands may also be sent to the DMC 1300 controller in Binary format. The Binary command format
is in the form of a fixed format record. The first byte is always the command number which is between
138 and 255. The second byte is used to define whether the command is an interrogation and which
axis or fields are valid for the command. Four fields of six bytes each follow for the data for each axis
where 4 bytes are integer and 2 bytes are fraction. Numbers in these fields are represented in 2’s
complement.

DMC 1310/1340

040 Command

041 Format
 Bit 7 = 1 for interrogation, 0 for otherwise
 Bit 6 = Reserved
 Bit 5 = Reserved
 Bit 4 = Coordinated axis - S
 Bit 3 = W axis or field 4 data valid
 Bit 2 = Z axis or field 3 data valid
 Bit 1 = Y axis or field 2 data valid
 Bit 0 = X axis or field 1 data valid

042 - 047 Field 1 (X axis)

048 - 04D Field 2 (Y axis)

04E - 053 Field 3 (Z axis)

054 - 059 Field 4 (W axis)

DMC 1350/1380

040 Command Bit 7 = Binary

041 Format Bit 7 = 1 for interrogation

042 Bit 0 = S (Coordinated axis - S)

043 Bit 7 = H axis or field 8 data valid
 Bit 6 = G axis or field 7 data valid
 Bit 5 = F axis or field 6 data valid
 Bit 4 = E axis or field 5 data valid
 Bit 3 = W axis or field 4 data valid
 Bit 2 = Z axis or field 3 data valid

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 45

 Bit 1 = Y axis or field 2 data valid
 Bit 0 = X axis or field 1 data valid

044 - 049 Field 1 (X axis)

04A - 04F Field 2 (Y axis)

050 - 055 Field 3 (Z axis)

056 - 05B Field 4 (W axis)

05C - 061 Field 5 (E axis)

062 - 067 Field 6 (F axis)

068 - 06D Field 7 (G axis)

06E - 073 Field 8 (H axis)

Below are three examples showing how to send Binary commands to the DMC 1300.

Example: Send the command KP4,,6,8,,20,30 to the DMC 1380 in Binary format.

 Address Value (hex) Comment
 040 B6 Code for KP
 041 00 No interrogation
 042 00 No coordinated motion
 043 D6 X, Z, W, F, G axes active
 044 - 049 00 00 00 04 00 00 X data = 4
 04A - 04F 00 00 00 00 00 00 Y data = 0
 050 - 055 00 00 00 06 00 00 Z data = 6
 056 - 05B 00 00 00 08 00 00 W data = 8
 05C - 061 00 00 00 00 00 00 E data = 0
 062 - 067 00 00 00 14 00 00 F data = 20
 068 - 06D 00 00 00 1E 00 00 G data = 30
 06F - 073 00 00 00 00 00 00 H data = 0

Example: Send the command BGS to the DMC 1340 in Binary format.

 Address Value (hex) Comment
 040 CE Code for BG
 041 10 Coordinated motion
 042 - 059 -- Don’t care

Example: Interrogate the DMC 1380 controller with the command ER,?,,?,,?

 Address Value (hex) Comment
 040 BF Code for ER
 041 80 Interrogation
 042 00 No coordinated motion
 043 2A Y, W, F axes active
 044 - 073 -- Don’t care

Response Buffer
DMC 1310/1340 Addresses 070 - 09F

DMC 1350/1380 Addresses 090 - 0C3

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 46

The response buffer is used to return the values requested by an interrogation command. The
information is always presented as a binary record in similar format to the command record. The data
for each axis is 4 bytes integer and 2 bytes fraction.

When the response buffer has valid data, the response buffer semaphore (003) is set. Once the data
has been read by the host, the semaphore should be cleared. The response semaphore will always be
valid when the command buffer semaphore is cleared to show command done.

The address locations for the responses are as follows.

DMC 1310/1340

070 Command which generated response

071 Format
 Bit 7 = 1 (interrogation)
 Bit 6 =
 Bit 5 =
 Bit 4 =
 Bit 3 = W axis or field 4 data valid
 Bit 2 = Z axis or field 3 data valid
 Bit 1 = Y axis or field 2 data valid
 Bit 0 = X axis or field 1 data valid

072 - 077 X axis data

078 - 07D Y axis data

07E - 083 Z axis data

084 - 089 W axis data

DMC 1350/1380

090 Command which generated response

091 Format Bit 7 = 1 (interrogation)

093 Bit 7 = H axis data valid
 Bit 6 = G axis data valid
 Bit 5 = F axis data valid
 Bit 4 = E axis data valid
 Bit 3 = W axis data valid
 Bit 2 = Z axis data valid
 Bit 1 = Y axis data valid
 Bit 0 = X axis data valid

094 - 099 X axis data

09A - 09E Y axis data

0A0 - 0A5 Z axis data

0A6 - 0AB W axis data

0AC - 0B1 E axis data

0B2 - 0B7 F axis data

0B8 - 0BD G axis data

0BE - 0C3 H axis data

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 47

Example: The command KP? is sent to the command buffer of a DMC 1340. The response buffer would
show the following for X, Y, Z and W values of 10,20,30 and 40 respectively.

 Address Value (hex) Comment
 070 B6 Code for KP
 071 8F All axes valid
 072 - 077 00 00 00 0A 00 00 X data = 10
 078 - 07D 00 00 00 14 00 00 Y data = 20
 07E - 083 00 00 00 1E 00 00 Z data = 30
 084 - 089 00 00 00 28 00 00 W data = 40

Example: The command ER? is sent to the command buffer of a DMC 1380. The response buffer would
show the following for X, Y, Z, W, E, F, G and H values of 100, 200, 300, 400, 500, 600, 700 and 800
respectively.

 Address Value (hex) Comment
 090 BF Code for ER
 091 80 Bit 7 = 1 for interrogation
 093 FF All axes valid
 094 - 099 00 00 00 64 00 00 X data = 100
 09A - 09F 00 00 00 C8 00 00 Y data = 200
 0A0 - 0A5 00 00 01 2C 00 00 Z data = 300
 0A6 - 0AB 00 00 01 90 00 00 W data = 400
 0AC - 0B1 00 00 01 F4 00 00 E data = 500
 0B2 - 0B7 00 00 02 58 00 00 F data = 600
 0B8 - 0BD 00 00 02 BC 00 00 G data = 700
 0BE - 0C3 00 00 03 20 00 00 H data = 800

Contour Buffer
DMC 1310/1340 Addresses 0A0 - 0BD

DMC 1350/1380 Addresses 0E0 - 101

The contour buffer holds the contour record sent by the host during contour mode. This mode allows
for arbitrary profiles by defining a set of positions vs. time. The contour mode is explained in detail in
Section 5.

The procedure to send a contour record to the controller is as follows.

1. Enter the contour mode with the CM command.

2. Wait for Bit 7 of the contour semaphore (005) to be clear.

3. Write the contour record to the contour buffer.

4. Set Bit 7 of the contour semaphore.

5. Repeat steps 2 through 5 until the contour record 80 80 is sent ending contour mode.

The general status register’s Bit 2 will be set if there is an error either in the timing or in the format of the
contour record, and the command buffer error code will help find the cause of the error.

The format of the contour records are as follows.

DMC 1310/1340

0A0 80

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 48

0A1 80 to 88 time interval

0A2 - 0A5 Number of counts to move X axis

0A6 - 0A9 Number of counts to move Y axis

0AA - 0AD Number of counts to move Z axis

0AE - 0B1 Number of counts to move W axis

DMC 1350/1380

0E0 80

0E1 80 to 88 time interval

0E2 - 0E5 Number of counts to move X axis

0E6 - 0E9 Number of counts to move Y axis

0EA - 0ED Number of counts to move Z axis

0EE - 0F1 Number of counts to move W axis

0F2 - 0F5 Number of counts to move E axis

0F6 - 0F9 Number of counts to move F axis

0FA - 0FD Number of counts to move G axis

0FE - 101 Number of counts to move H axis

Below is an example of using the contour mode on a DMC 1340 controller.

 Address Value (hex) Comment
 0A0 80 Contour mode
 0A1 84 Time between records 16 msec
 0A2 - 0A5 00 00 00 10 X move 16 counts
 0A6 - 0A9 FF FF FF E6 Y move -26 counts
 0AA - 0AD 00 00 02 11 Z move 529 counts
 0AE - 0B1 00 00 00 00 W move 0 counts

The contour mode is then terminated using the following command.

 Address Value (hex) Comment
 0A0 80 Contour mode
 0A1 80 End contour mode
 0A2 - 0A5 XX XX XX XX Don’t care
 0A6 - 0A9 XX XX XX XX Don’t care
 0AA - 0AD XX XX XX XX Don’t care
 0AE - 0B1 XX XX XX XX Don’t care

Program Buffer
DMC 1310/1340 Addresses 0BE - 0E7

DMC 1350/1380 Addresses 10E - 15F

The program buffer is used for creating and editing application programs, receiving information from
application programs, and receiving the program line if an error occurs during program execution.
Programs sent to the program buffer must always be in ASCII format. There are two ways to write a
program to the buffer.

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 49

Writing programs using the Bit 3 system

Programs may be written directly through the COMM 1300 software when using the Bit 3 adapter
system. In this instance, the ED command is given to enter the editor mode. Once in the editor mode,
commands are written in ASCII, with each line ending in a carriage return. Below are the commands
used for working in the COMM 1300 editor mode.

 <return> Save line

 <control> I Insert line

 <control> D Delete line

 Up arrow Previous line (DO NOT USE <ctrl> P)

 <control> Q Quit Editor

When the <control> Q command is issued at the end of editing, the program is automatically
downloaded to the controller.

Writing programs to the Program Buffer

Programs may also be written directly to the program buffer. The first two memory locations will
contain the program line number whenever the program buffer contains a program line. The program
buffer semaphore Bit 7 is set by the DMC 1300 whenever valid data is placed in the program buffer. Bit
6 is set whenever that data is a program line as opposed to an interrogation or output from an MG
command.

To create or edit an application program, the ED command is given to put the DMC 1300 in edit mode.
This can always be checked by testing Bit 4 of the general status register. The program line number of
the program line in the buffer is placed by the DMC 1300 in the first two memory locations, with the
program line following. The program buffer semaphore is set to C0 signifying that the buffer contains
valid data and that the data is a program line.

At this point the host can alter the contents of the program buffer and invoke any of the editor
commands. These commands are as follows.

 Command Command Code Function
 Save Line 9D Save current line and put the
 next line in the program buffer.
 Previous Line 9B Put the previous line in the
 program buffer.
 Delete Line 9A Delete the program line.
 Insert Line 99 Insert a new line before the
 current line.
 Quit Edit 9C Terminate the edit mode.

All program lines must be terminated in a carriage return (0D hex). The editor command is placed in the
command buffer 40 by the host and the command semaphore (001 hex) is set (80 hex). When the
command semaphore is cleared, another edit command may be executed.

Axis Buffers
DMC 1310/1340 Addresses 100 - 1FF

DMC 1350/1380 Addresses 200 - 43F

The axis buffers contain information on the control of each of the axes. The four buffers are identical in
format.

DMC 1310/1340

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 50

X Y Z W

100 140 180 1C0 Status #1
Bit 7 = Axis running (In motion)
Bit 6 = 1 - Positional move, 0 - jog
Bit 5 = Position absolute move
Bit 4 = Find edge
Bit 3 = Home
Bit 2 = Homing 1st phase complete
Bit 1 = Homing 2nd phase complete
Bit 0 = Coordinated move

101 141 181 1C1 Status #2
Bit 7 = Minus direction
Bit 6 = Contour mode
Bit 5 = Profile is in velocity slew
Bit 4 = Stopped other than by reaching
 final destination
Bit 3 = Profile is in final deceleration
Bit 2 = Latch is armed
Bit 1 = Off on error
Bit 0 = Motor is off

104 144 184 1C4 Stop Code

105 145 185 1C5 Switches
Bit 7 = Latched
Bit 6 = State of Latch
Bit 3 = State of Forward Limit Switch
Bit 2 = State of Reversed Limit Switch
Bit 1 = State of Home
Bit 0 = SM Jumper installed

106-109 146-149 186-189 1C6-1C9 Motor position

10A-10D 14A-14D 18A-18D 1CA-1CD Position error

10E-10F 14E-14F 18E-18F 1CE-1CF Torque

110--113 150-153 190-193 1D0-1D3 Auxiliary encoder

114-117 154-157 194-197 1D4-1D7 Command position

118-11B 158-15B 198-19B 1D8-1DB Latched position

11C - 11F 15C - 15F 19C - 19F 1DC - 1DF Velocity (2.2 counts/sample)

DMC 1350/1380

X (E) Y (F) Z (G) W (H)

200(300) 240(340) 280(380) 2C0(3C0) Status #1
Bit 7 = Axis running (In motion)
Bit 6 = 1 - Positional move, 0 - jog
Bit 5 = position absolute move
Bit 4 = Find edge
Bit 3 = Home
Bit 2 = Homing 1st phase complete
Bit 1 = Homing 2nd phase complete
Bit 0 = Coordinated move

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 51

201(301) 241(341) 281(381) 2C1(3C1) Status #2
Bit 7 = Minus direction
Bit 6 = Contour mode
Bit 5 = Profile is in velocity slew
Bit 4 = Stopped other than by reaching
 final destination
Bit 3 = Profile is in final deceleration
Bit 2 = Latch is armed
Bit 1 = Off on error
Bit 0 = Motor is off

204(304) 244(344) 284(384) 2C4(3C4) Stop Code

205(305) 245(345) 285(385) 2C5(3C5) Switches
Bit 7 = Latch has occurred
Bit 6 = Latch is armed
Bit 3 = State of forward limit switch
Bit 2 = State of reversed limit switch
Bit 1 = State of home
Bit 0 = SM Jumper installed

206-209

(306-309)

246-249

(346-349)

286-289

(386-389)

2C6-2C9

(3C6-3C9)

Motor position

20A-20D

(30A-30D)

24A-24D

(34A-34D)

28A-28D

(38A-38D)

2CA-2CD

(3CA-3CD)

Position error

20E-20F

(30E-30F)

24E-24F

(34E-34F)

28A-28D

(38A-38D)

2CA-2CD

(3CA-3CD)

Torque

210-213

(310-313)

250-253

(350-353)

290-293

(390-393)

2D0-2D3

(3D0-3D3)

Auxiliary encoder

214-217

(314-317)

254-257

(354-357)

294-297

(394-397)

2D4-2D7

(3D4-3D7)

Command position

218-21B

(318-31B)

258-25B

(358-35B)

298-29B

(398-39B)

2D8-2DB

(3D8-3DB)

Latched position

21C-21F

(31C-31F)

25C-25F

(35C-35F)

29C-29F

(39C-39F)

2DC-2DF

(3DC-3DF)

Velocity (2.2 counts/sample)

The information in the axis buffers is updated by the DMC 1300 automatically at the rate set by the
Number of Samples Register (029). The default value is every 2 msec.

In order to insure that these values (and the Sample Count 014-017) remain stable during a read, the
following procedure should be followed.

1. Set Bit 7 of the Freeze semaphore (007). This tells the DMC 1300 not to start its update
procedure.

2. Wait for Bit 7 of the updating semaphore to be a 0. This is in case the DMC 1300 was
already in its update procedure.

3. Perform all the reads needed.

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 52

4. Clear the Freeze semaphore.

Coordinate Axis Buffer
DMC 1310/1340 Addresses 200 - 23F

DMC 1350/1380 Addresses 400 - 43F

This buffer gives status information during a coordinated move (VP or CR).

DMC 1310/1340

200 Status #1 Bit 7 = Coordinate move running.

201 Status #2 Bit 7 =
 Bit 6 =
 Bit 5 = Profile is in velocity slew.
 Bit 4 = Stopped other than by reaching final destination.
 Bit 3 = Profile is in final deceleration.
 Bit 2 =
 Bit 1 =
 Bit 0 =

DMC 1350/1380

400 Status #1 Bit 7 = Coordinate move running.

401 Status #2 Bit 7 =
 Bit 6 =
 Bit 5 = Profile is in velocity slew.
 Bit 4 = Stopped other than by reaching final destination.
 Bit 3 = Profile is in final deceleration.
 Bit 2 =
 Bit 1 =
 Bit 0 =

Variable Buffer
DMC 1310/1340 Addresses 240 - 3BF

DMC 1350/1380 Addresses 440 - 5BF

An array with 64 variable elements is automatically assigned to the dual-port RAM at locations 240 -
3BF for the DMC 1310/1340 and locations 440 - 5BF for the DMC 1350/1380. These variables have 4
bytes of integer and 2 bytes of fraction. Variables are assigned with the VR[n]= command where n = 0
through 63.

Variable updates are not affected by the freeze update semaphore. Therefore, to ensure that data has
not changed during the READ cycle, it is suggested that you read the data twice.

For example, the 22nd variable element on a DMC 1310 would be at address:

 22 * 6 + $240 = $2C4

The 22nd variable element on a DMC 1350 would be at address:

 22 * 6 + $440 = $4C4

DMC 1300 Chapter 4 VME Communication •• Error! Main Document Only. - 53

Interrupts
The DMC 1300 board supports the VME Bus vectored interrupts. The interrupt may occur on any one
of the seven interrupt levels.

To select the interrupt level, two sets of jumpers must be installed on the board. These are JP13 (IRQ1 -
IRQ7) and JP12 (IAD1 - IAD4), and are located on the bottom right side of the board. The two sets
work together and must be set correctly for the interrupt procedure to function correctly. The IRQ1 -
IRQ7 jumpers set the interrupt priority (IRQ7 is the highest). One jumper should be placed on the level
chosen. The IAD1 - IAD4 jumpers are used to put the vector on the bus. They form a 3 bit binary
combination, where IAD4 is the most significant bit. The combination must be equal to the IRQ number
picked. A jumper causes that bit to be a zero.

For example, to set the interrupt for level 6, a jumper would be placed on IRQ6. The IAD1 - IAD4
jumpers would be as follows.

IAD4 IAD2 IAD1

1 1 0

R R J

where R means jumper removed and J means jumper present.

The interrupt vector is a numb er between 8 and 255 and must be set by the EI command. Below is an
example of setting the interrupt vector to 64 (40 hex).

 ASCII EI,,64

 Binary 8C 02 00 00 00 00 00 00 00 00 00 00 40

There are many events which can generate an interrupt. While more than one event can be enabled,
there is only one interrupt on the DMC 1300. Each event can be enabled by the EI instruction or by
writing directly to the interrupt mask in the dual-port RAM. The events and their corresponding
position in the interrupt mask can be found on page…

The mask can be set in the first field of the EI instruction. The byte that corresponds to 38 is the most
significant and 39 the least. For input interrupts, 03A must be set for the corresponding input. If we
wished to create an interrupt whenever the Y axis completes its motion, the mask would consist of Bit 2
of the LSB, which is 0002 hex. In decimal, that number is 2, so the commands would be as follows.

 ASCII EI2

 Binary 8C 01 00 00 00 02 00 00 00 XX XX XX XX

The User Interrupt (UI) instruction is used to generate an interrupt from an application program.

The User Interrupt number will appear in address 033 for the DMC 1310/1340 and 035 for the DMC
1350/1380. The motion complete interrupts will generate an interrupt whenever the controller has
finished profiling a motion. The motor motion itself may still not have settled. Bit 1 of 36 will cause an
interrupt whenever the position error for any axis exceeds the limits set in the ER instruction.

Bits 5 and 6 of 36 create interrupts which facilitate communication. Command Done interrupts when the
command semaphore is cleared at the end of a command. Application Program Stopped generates an
interrupt on any termination of an application program (either an EN command, an error or an abort).
The Program Buffer Valid interrupt occurs on any write to the program buffer by the DMC 1300. This
would be an MG command or an interrogation KP? command in an application program. The Program
Pause interrupt is caused by the Program Pause (PP) command.

DMC 1300 Chapter 5 Command Basics •• Error! Main Document Only. - 55

Chapter 5 Command Basics

Introduction
The DMC 1300 provides over 100 commands for specifying motion and machine parameters.
Commands are included to initiate action, interrogate status and configure the digital filter.

Commands can be sent to the DMC 1300 in either ASCII or Binary. In ASCII, the instruction set is
BASIC-like and easy to use. Instructions consist of two uppercase letters that correspond phonetically
with the appropriate function. For example, the instruction BG begins motion, while ST stops motion.
In Binary, commands are fixed format with a command number followed by numeric fields for each axis.

For example, to send a positional move in ASCII format, the following command is sent:

 PR 4000,9000 <enter>

where PR is the Position Relative command, 4000 and 9000 are the X and Y positions respectively, and
the <enter> terminates the command.

In Binary, the equivalent would be:

 C9 07 00 00 0F A0 00 00 00 00 23 28 00 00

where C9 is the Position Relative binary code, 07 specifies parameters for the X and Y fields, and the
remaining fields are the X and Y data showing four bytes of integer followed by two bytes of fraction.

Commands can be sent "live" over the bus for immediate execution by the DMC 1300, or an entire group
of commands can be downloaded into the DMC 1300 memory for execution at a later time. Combining
commands into groups for later execution is referred to as Applications Programming and is discussed
in the following chapter.

This section describes the DMC 1300 instruction set and syntax. A summary of commands as well as a
complete listing of all DMC 1300 instructions is included in the Command Reference chapter.

DMC 1300 Chapter 5 Command Basics •• Error! Main Document Only. - 56

Command Syntax

ASCII
DMC 1300 instructions are represented by two ASCII upper case characters followed by applicable
arguments. A space may be inserted between the instruction and arguments. An <enter> is used to
terminate the instruction for processing by the DMC 1300 command interpreter. Note: If you are using
a Galil terminal program, commands will not be processed until an <enter> command is given.

IMPORTANT: All DMC 1300 commands are sent in upper case.

Commands may be sent to the controller through the Galil COMM-1300 software if using the Bit 3
system, or written directly to the Command Buffer for a custom VME interface.

For example, the command

 PR 4000 <enter> Position relative

PR is the two character instruction for position relative. 4000 is the argument which represents the
required position value in counts. The <enter> terminates the instruction. The space between PR and
4000 is optional. This command is sent directly through the command line of the COMM-1300 software
with a Bit 3 system. With a custom VME interface, the following hex equivalent is written to the
command buffer at address 40.

 Address Command (hex) Description

 40 50 ASCII ‘P’
 41 52 ASCII ‘R’
 42 34 ASCII ‘4’
 43 30 ASCII ‘0’
 44 30 ASCII ‘0’
 45 30 ASCII ‘0’
 46 0D ASCII ‘Return’

Bit 7 of the Command Semaphore is then set to 80 hex, which will send this command to the controller.

For specifying data for the X,Y,Z and W axes, commas are used to separate the axes. If no data is
specified for an axis, a comma is still needed as shown in the examples below. If no data is specified for
an axis, the previous value is maintained. The space between the data and instruction is optional. For
controllers with 5 or more axes, the axes are referred to as A,B,C,D,E,F,G,H where X,Y,Z,W and A,B,C,D
may be used interchangeably.

Instead of data, some commands request action to occur on an axis or group of axes. For example, ST
XY stops motion on both the X and Y axes. Commas are not required in this case since the particular
axis is specified by the appropriate letter X Y Z or W. If no parameters follow the instruction, action will
take place on all axes. Here are some examples of syntax for requesting action:

BG X Begin X only

BG Y Begin Y only

BG XYZW Begin all axes

BG YW Begin Y and W only

DMC 1300 Chapter 5 Command Basics •• Error! Main Document Only. - 57

BG Begin all axes

1380
For controllers with 5 or more axes, the axes are referred to as A,B,C,D,E,F,G,H. The specifiers X,Y,Z,W
and A,B,C,D may be used interchangeably:

BG ABCDEFGH Begin all axes

BG D Begin D only

Binary
Commands may also be sent to the DMC 1300 in Binary mode. Most DMC commands will have a
corresponding Binary code. Binary commands and any corresponding data are written to the Command
Buffer (040). For example, the Binary code for GN is B8 (hex). This code is written to address 040
followed by axis data. The axis data is represented by four bytes of integer and two bytes of data. To
send the command GN 5,,7 to the DMC 1300, the following command is sent:

 Address Command (hex) Description

 40 B8 Code for GN
 41 05 X and Z axis active
 42 - 45 00 00 00 05 X axis integer
 46 - 47 00 00 X axis fraction
 48 - 4D - Y axis data
 4E - 51 00 00 00 07 Z axis integer
 52 - 53 00 00 Z axis fraction
 54 - 59 - W axis data

This command is sent when Bit 7 of the Command Semaphore is set to 80 (hex). A full listing and
explanation of the DMC 1300 address registers can be found in Chapter 4.

Coordinated Motion with more than 1 axis
When requesting action for coordinated motion, the letter S is used to specify the coordinated motion.
For example:

BG S Begin coordinated sequence

BG SW Begin coordinated sequence and W axis

Program Syntax
Chapter 7 explains the how to write and execute motion control programs.

Controller Response to DATA
When using the Comm1300 software, the DMC 1300 returns a : for valid commands, and a ? for invalid
commands.

DMC 1300 Chapter 5 Command Basics •• Error! Main Document Only. - 58

For example, if the command BG is sent in lower case, the DMC 1300 will return a ?.

:bg <enter> invalid command, lower case

? DMC 1300 returns a ?

When the controller receives an invalid command the user can request the error code. The error code
will specify the reason for the invalid command response. To request the error code type the command:
TC1 For example:

?TC1 <enter> Tell Code command

1 Unrecognized
command

Returned response

Command errors can also be read directly from the address registers. Command errors can be generated
either from the Command Buffer or from an application program. When the controller receives an error
from the Command Buffer, Bit 0 of the General Status (010) will be set. The reason for the error is read at
address 012, with the error codes listed in the TC command. Similarly, when the controller receives an
error from an application program, Bit 1 of the General Status (010) will be set. The reason for that error
is read at address 013, with the list of error codes listed in the TC command.

There are many reasons for receiving an invalid command response. The most common reasons are:
unrecognized command (such as typographical entry or lower case), command given at improper time
(such as during motion), or a command out of range (such as exceeding maximum speed). A complete
list of all error codes can be found with the description of the TC command in the Command Reference,
Chapter 11.

Interrogating the Controller

Interrogation Commands
The DMC 1300 has a set of commands that directly interrogate the controller. When the command is
entered through the COMM-1300 software, the requested data is returned in decimal format on the next
line followed by a carriage return and line feed. When the command is written to the Command Buffer,
the response can be read in the Response Buffer. When there is valid data in the Response Buffer, the
Response Buffer Semaphore is set. If the interrogation is sent from an application program, the
response is found in the Program Buffer.

Summary of Interrogation Commands

RP Report Command Position

RL Report Latch

∧R ∧V Firmware Revision Information

SC Stop Code

TB Tell Status

TC Tell Error Code

TD Tell Dual Encoder

DMC 1300 Chapter 5 Command Basics •• Error! Main Document Only. - 59

TE Tell Error

TI Tell Input

TP Tell Position

TR Trace

TS Tell Switches

TT Tell Torque

TV Tell Velocity

For example, the following example illustrates how to display the current position of the X axis:

TP X <enter> Tell position X

0000000000 Controlle rs Response

TP XY <enter> Tell position X and Y

0000000000,0000000000 Controllers Response

Many of these interrogation commands can also be read directly from registers in the DMC 1300.
Please refer to Chapter 4 to find the actual address locations of these commands.

Additional Interrogation Methods.
Most commands can be interrogated by using a question mark (?) as the axis specifier. Type the
command followed by a ? for each axis requested.

PR ,,?,,? The controller will return the PR value for the C and E axes

PR ?,?,?,? The controller will return the PR value for the A,B,C and D axes

PR ,,,,,,,? The controller will return the PR value for the H axis

The controller can also be interrogated with operands.

Operands
Most DMC 1300 commands have corresponding operands that can be used for interrogation.
Operands must be used inside of valid DMC expressions. For example, to display the value of an
operand, the user could use the command:

 MG ‘operand’

All of the command operands begin with the underscore character (_). For example, the value of the
current position on the X axis can be assigned to the variable ‘V’ with the command:

 V=_TPX

The Command Reference denotes all commands which have an equivalent operand as "Used as an
Operand". Also, see description of operands in Chapter 7.

DMC 1300 Chapter 5 Command Basics •• Error! Main Document Only. - 60

Command Summary
For a complete command summary, see Chapter 12 Command Reference.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 61

Chapter 6 Programming Motion

Overview
The DMC 1300 can be commanded to do the following modes of motion: Absolute and relative
independent positioning, jogging, linear interpolation (up to 8 axes), linear and circular interpolation (2
axes with 3rd axis of tangent motion), electronic gearing and contouring. These modes are discussed in
the following sections.

The DMC-1310 is a single axis controller and uses X-axis motion only. Likewise, the DMC-1320 uses X
and Y, the DMC-1330 uses X,Y and Z, and the DMC-1340 uses X,Y,Z and W. The DMC-1350 uses
A,B,C,D, and E. The DMC-1360 uses A,B,C,D,E, and F. The DMC-1370 uses A,B,C,D,E,F and G. The
DMC-1380 uses the axes A,B,C,D,E,F,G, and H.

The example applications described below will help guide you to the appropriate mode of motion.

1380
For controllers with 5 or more axes, the specifiers, ABCDEFGH, are used. XYZ and W may be
interchanged with ABCD.

Independent Axis Positioning
In this mo de, motion between the specified axes is independent, and each axis follows its own profile.
The user specifies the desired absolute position (PA) or relative position (PR), slew speed (SP),
acceleration ramp (AC), and deceleration ramp (DC), for each axis. On begin (BG), the DMC 1300
profiler generates the corresponding trapezoidal or triangular velocity profile and position trajectory.
The controller determines a new command position along the trajectory every sample period until the
specified profile is complete. Motion is complete when the last position command is sent by the DMC
1300 profiler. Note: The actual motor motion may not be complete when the profile has been completed,
however, the next motion command may be specified.

The Begin (BG) command can be issued for all axes either simultaneously or independently. XYZ or W
axis specifiers are required to select the axes for motion. When no axes are specified, this causes
motion to begin on all axe s.

The speed (SP) and the acceleration (AC) can be changed at any time during motion, however, the
deceleration (DC) and position (PR or PA) cannot be changed until motion is complete. Remember,
motion is complete when the profiler is finished, not when the actual motor is in position. The Stop

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 62

command (ST) can be issued at any time to decelerate the motor to a stop before it reaches its final
position.

An incremental position movement (IP) may be specified during motion as long as the additional move
is in the same direction. Here, the user specifies the desired position increment, n. The new target is
equal to the old target plus the increment, n. Upon receiving the IP command, a revised profile will be
generated for motion towards the new end posit ion. The IP command does not require a begin. Note:
If the motor is not moving, the IP command is equivalent to the PR and BG command combination.

Command Summary - Independent Axis
COMMAND DESCRIPTION

PR X,Y,Z,W Specifies relative distance

PA x,y,z,w Specifies absolute position

SP x,y,z,w Specifies slew speed

AC x,y,z,w Specifies acceleration rate

DC x,y,z,w Specifies deceleration rate

BG XYZW Starts motion

ST XYZW Stops motion before end of move

IP x,y,z,w Changes position target

IT x,y,z,w Time constant for independent motion smoothing

AM XYZW Trippoint for profiler complete

MC XYZW Trippoint for "in position"

The lower case specifiers (x,y,z,w) represent position values for each axis. For controllers with more
than 4 axes, the position values would be represented as a,b,c,d,e,f,g,h.

Operand Summary - Independent Axis
OPERAND DESCRIPTION

_Acx Return acceleration rate for the axis specified by ‘x’

_DCx Return deceleration rate for the axis specified by ‘x’

_SPx Returns the speed for the axis specified by ‘x’

_PAx Returns current destination if ‘x’ axis is moving, otherwise returns the current
commanded position if in a move.

_PRx Returns current incremental distance specified for the ‘x’ axis

Example - Absolute Position Movement
PA 10000,20000 Specify absolute X,Y position

AC 1000000,1000000 Acceleration for X,Y

DC 1000000,1000000 Deceleration for X,Y

SP 50000,30000 Speeds for X,Y

BG XY Begin motion

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 63

Example - Multiple Move Sequence

Required Motion Profiles:

X-Axis 500 counts Position

 10000 count/sec Speed

 500000 counts/sec2 Acceleration

Y-Axis 1000 counts Position

 15000 count/sec Speed

 500000 counts/sec2 Acceleration

Z-Axis 100 counts Position

 5000 counts/sec Speed

 500000 counts/sec Acceleration

This example will specify a relative position movement on X, Y and Z axes. The movement on each axis
will be separated by 20 msec. Fig. 6.1 shows the velocity profiles for the X,Y and Z axis.

#A Begin Program

PR 2000,500,100 Specify relative position movement of 1000, 500 and 100 counts for X,Y
and Z axes.

SP 15000,10000,5000 Specify speed of 10000, 15000, and 5000 counts / sec

AC 500000,500000,500000 Specify acceleration of 500000 counts / sec2 for all axes

DC 500000,500000,500000 Specify deceleration of 500000 counts / sec2 for all axes

BG X Begin motion on the X axis

WT 20 Wait 20 msec

BG Y Begin motion on the Y axis

WT 20 Wait 20 msec

BG Z Begin motion on Z axis

EN End Program

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 64

VELOCITY
(COUNTS/SEC)

20000

10000

5000

15000

20 40 60 80

TIME (ms)

100

X axis velocity profile

Y axis velocity profile

Z axis velocity profile

0

Figure 6 .1 - Velocity Profiles of XYZ

Notes on fig 6.1: The X and Y axis have a ‘trapezoidal’ velocity profile, while the Z axis has a
‘triangular’ velocity profile. The X and Y axes accelerate to the specified speed, move at this constant
speed, and then decelerate such that the final position agrees with the command position, PR. The Z
axis accelerates, but before the specified speed is achieved, must begin deceleration such that the axis
will stop at the commanded position. All 3 axes have the same acceleration and deceleration rate,
hence, the slope of the rising and falling edges of all 3 velocity profiles are the same.

Independent Jogging
The jog mode of motion allows the user to change speed, direction and acceleration during motion. The
user specifies the jog speed (JG), acceleration (AC), and the deceleration (DC) rate for each axis. The
direction of motion is specified by the sign of the JG parameters. When the begin command is given
(BG), the motor accelerates up to speed and continues to jog at that speed until a new speed or stop
(ST) command is issued. If the jog speed is changed during motion, the controller will make a
accelerated (or decelerated) change to the new speed.

An instant change to the motor position can be made with the use of the IP command. Upon receiving
this command, the controller commands the motor to a position which is equal to the specified
increment plus the current position. This command is useful when trying to synchronize the position of
two motors while they are moving.

Note that the controller operates as a closed-loop position controller while in the jog mode. The DMC
1300 converts the velocity profile into a position trajectory and a new position target is generated every
sample period. This method of control results in precise speed regulation with phase lock accuracy.

Command Summary - Jogging
COMMAND DESCRIPTION

AC x,y,z,w Specifies acceleration rate

BG X,Y,Z,W Begins motion

DC x,y,z,w Specifies deceleration rate

IP x,y,z,w Increments position instantly

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 65

IT x,y,z,w Time constant for independent motion smoothing

JG +/-x,y,z,w Specifies jog speed and direction

ST XYZW Stops motion

Operand Summary - Independent Axis
OPERAND DESCRIPTION

_ACx Return acceleration rate for the axis specified by ‘x’

_DCx Return deceleration rate for the axis specified by ‘x’

_SPx Returns the jog speed for the axis specified by ‘x’

_TVx Returns the actual velocity of the axis specified by ‘x’ (averaged over.25 sec)

Example - Jog in X only

Jog X motor at 50000count/s. After X motor is at its jog speed, begin jogging Z in reverse direction at
25000 count/s.

#A

AC 20000,,20000 Specify X,Z acceleration of 20000 cts/sec

DC 20000,,20000 Specify X,Z deceleration of 20000 cts/sec

JG 50000,,-25000 Specify jog speed and direction for X and Z axis

BG XY Begin X motion

AS X Wait until X is at speed

BG Z Begin Z motion

EN

Example - Joystick jogging

The jog speed can also be changed using an analog input such as a joystick. Assume that for a 10 Volt
input the speed must be 50000 counts/sec.

#JOG Label

JG0 Set in Jog Mode

BGX Begin motion

#B Label for Loop

V1 = @AN[1] Read analog input

VEL = V1*50000/2047 Compute speed

JG VEL Change JG speed

JP #B Loop

Linear Interpolation Mode
The DMC 1300 provides a linear interpolation mode for 2 or more axes (up to 8 axes for the DMC-1380).
In linear interpolation mode, motion between the axes is coordinated to maintain the prescribed vector
speed, acceleration, and deceleration along the specified path. The motion path is described in terms of

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 66

incremental distances for each axis. An unlimited number of incremental segments may be given in a
continuous move sequence, making the linear interpolation mode ideal for following a piece-wise linear
path. There is no limit to the total move length.

The LM command selects the Linear Interpolation mode and axes for interpolation. For example, LM YZ
selects only the Y and Z axes for linear interpolation.

When using the linear interpolation mode, the LM command only needs to be specified once unless the
axes for linear interpolation change.

Specifying Linear Segments
The command LI x,y,z,w or LI a,b,c,d,e,f,g,h specifies the incremental move distance for each axis. This
means motion is prescribed with respect to the current axis position. Up to 511 incremental move
segments may be given prior to the Begin Sequence (BGS) command. Once motion has begun,
additional LI segments may be sent to the controller.

The clear sequence (CS) command can be used to remove LI segments stored in the buffer prior to the
start of the motion. To stop the motion, use the instructions STS or AB. The command, ST, causes a
decelerated stop. The command, AB, causes an instantaneous stop and aborts the program, and the
command AB1 aborts the motion only.

The Linear End (LE) command must be used to specify the end of a linear move sequence. This
command tells the controller to decelerate to a stop following the last LI command. If an LE command is
not given, an Abort AB1 must be used to abort the motion sequence.

It is the responsibility of the user to keep enough LI segments in the DMC 1300 sequence buffer to
ensure continuous motion. If the controller receives no additional LI segments and no LE command,
the controller will stop motion instantly at the last vector. There will be no controlled deceleration.
LM? or _LM returns the available spaces for LI segments that can be sent to the buffer. 511 returned
means the buffer is empty and 511 LI segments can be sent. A zero means the buffer is full and no
additional segments can be sent. As long as the buffer is not full, additional LI segments can be sent
and loaded through the DMC 1300 Command Buffer.

The instruction _CS returns the segment counter. As the segments are processed, _CS increases,
starting at zero. This function allows the host computer to determine which segment is being
processed. This information is also available at addresses 018 - 019 of the general registers in the Dual
Port RAM.

Specifying Vector Acceleration, Deceleration and Speed:
The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration and
deceleration. The DMC 1300 computes the vector speed based on the axes specified in the LM mode.
For example, LM XYZ designates linear interpolation for the X,Y and Z axes. The vector speed for this
example would be computed using the equation:

VS
2
=XS

2
+YS

2
+ZS

2
, where XS, YS and ZS are the speed of the X,Y and Z axes.

The controller always uses the axis specifications from LM, not LI, to compute the speed.

In cases where the acceleration causes the system to 'jerk', the DMC 1300 provides a vector motion
smoothing function. VT is used to set the S-curve smoothing constant for coordinated moves.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 67

Additional Commands
The DMC 1300 provides commands for additional control of vector motion and program control. Note:
Many of the commands used in Linear Interpolation motion also applies Vector motion described in the
next section.

Trippoints

The command AV n is the ‘After Vector’ trippoint, which halts program execution until the vector
distance of n has been reached.

In this example, the XY system is required to perform a 90° turn. In order to slow the speed around the
corner, we use the AV 4000 trippoint, which slows the speed to 1000 count/s. Once the motors reach
the corner, the speed is increased back to 4000 cts / s.

Instruction Interpretation

#LMOVE Label

DP ,,0,0 Define position of Z and W axes to be 0

LMXY Define linear mode between X and Y axes.

LI 5000,0 Specify first linear segment

LI 0,5000 Specify second linear segment

LE End linear segments

VS 4000 Specify vector speed

BGS Begin motion sequence

AV 4000 Set trippoint to wait until vector distance of 4000 is reached

VS 1000 Change vector speed

AV 5000 Set trippoint to wait until vector distance of 5000 is reached

VS 4000 Change vector speed

EN Program end

Specifying Vector Speed for Each Segment

The instruction VS has an immediate effect and, therefore, must be given at the required time. In some
applications, such as CNC, it is necessary to attach various speeds to different motion segments. This
can be done by the instruction

 LI x,y,z,w < n

This instruction attaches the vector speed, n, to the motion segment LI. As a consequence, the
program #LMOVE can be written in the alternative form:

Instruction Interpretation

#ALT Label for alternative program

DP 0,0 Define Position of X and Y axis to be 0

LMXY Define linear mode between X and Y axes.

LI 4000,0 <4000 Specify first linear segment with a vector speed of 4000

LI 1000,0 < 1000 Specify second linear segment with a vector speed of 1000

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 68

LI 0,5000 < 4000 Specify third linear segment with a vector speed of 4000

LE End linear segments

BGS Begin motion sequence

EN Program end

Command Summary - Linear Interpolation
COMMAND DESCRIPTION

LM xyzw

LM abcdefgh

Specify axes for linear interpolation

(same) controllers with 5 or more axes

LM ? Returns number of available spaces for linear segments in DMC 1300 sequence
buffer. Zero means buffer full. 512 means buffer empty.

LI x,y,z,w < n

LI a,b,c,d,e,f,g,h
< n

Specify incremental distances relative to current position, and assign vector speed
n.

VS n Specify vector speed

VA n Specify vector acceleration

VD n Specify vector deceleration

BGS Begin Linear Sequence

CS Clear sequence

LE Linear End- Required at end of LI command sequence

LE? Returns the length of the vector (resets after 2147483647)

AMS Trippoint for After Sequence complete

AV n Trippoint for After Relative Vector distance,n

VT S curve smoothing constant for vector moves

Operand Summary - Linear Interpolation
OPERAND DESCRIPTION

_AV Return distance traveled

_CS Segment counter - returns number of the segment in the sequence, starting at zero.

_LE Returns length of vector (resets after 2147483647)

_LM Returns number of available spaces for linear segments in DMC 1300 sequence
buffer. Zero means buffer full. 512 means buffer empty.

_VPm Return the absolute coordinate of the last data point along the trajectory.

(m=X,Y,Z or W or A,B,C,D,E,F,G or H)

To illustrate the ability to interrogate the motion status, consider the first motion segment of our
example, #LMOVE, where the X axis moves toward the point X=5000. Suppose that when X=3000, the
controller is interrogated using the command ‘MG _AV’. The returned value will be 3000. The value of
_CS, _VPX and _VPY will be zero.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 69

Now suppose that the interrogation is repeated at the second segment when Y=2000. The value of
_AV at this point is 7000, _CS equals 1, _VPX=5000 and _VPY=0.

Example - Linear Move

Make a coordinated linear move in the ZW plane. Move to coordinates 40000,30000 counts at a vector
speed of 100000 counts/sec and vector acceleration of 1000000 counts/sec2.

Instruction Interpretation

#TEST Label

LM ZW Specify axes for linear interpolation

LI,,40000,30000 Specify ZW distances

LE Specify end move

VS 100000 Specify vector speed

VA 1000000 Specify vector acceleration

VD 1000000 Specify vector deceleration

BGS Begin sequence

AMS After motion sequence ends

EN End program

Note that the above program specifies the vector speed, VS, and not the actual axis speeds VZ and VW.
The axis speeds are determined by the DMC 1300 from:

VS VZ VW= +2 2

The resulting profile is shown in Figure 6.2.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 70

POSITION Z

0

0 40000

FEEDRATE

0 0.1 0.5 0.6

4000 36000

30000

27000

3000

VELOCITY

Z-AXIS

VELOCITY

W-AXIS

POSITION W

TIME (sec)

TIME (sec)

TIME (sec)

Figure 6.2 - Linear Interpolation

Example - Multiple Moves

This example makes a coordinated linear move in the XY plane. The Arrays VX and VY are used to
store 750 incremental distances which are filled by the program #LOAD.

Instruction Interpretation

#LOAD Load Program

DM VX [750],VY [750] Define Array

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 71

COUNT=0 Initialize Counter

N=0 Initialize position increment

#LOOP LOOP

VX [COUNT]=N Fill Array VX

VY [COUNT]=N Fill Array VY

N=N+10 Increment position

COUNT=COUNT+1 Increment counter

JP #LOOP,COUNT<750 Loop if array not full

#A Label

LM XY Specify linear mode for XY

COUNT=0 Initialize array counter

#LOOP2;JP#LOOP2,_LM=0 If sequence buffer full, wait

JS#C,COUNT=500 Begin motion on 500th segment

LI
VX[COUNT],VY[COUNT]

Specify linear segment

COUNT=COUNT+1 Increment array counter

JP #LOOP2,COUNT<750 Repeat until array done

LE End Linear Move

AMS After Move sequence done

MG "DONE" Send Message

EN End program

#C;BGS;EN Begin Motion Subroutine

Vector Mode: Linear and Circular Interpolation Motion
The DMC 1300 allows a long 2-D path consisting of linear and arc segments to be prescribed. Motion
along the path is continuous at the prescribed vector speed even at transitions between linear and
circular segments. The DMC 1300 performs all the complex computations of linear and circular
interpolation, freeing the host from this time intensive task.

The coordinated motion mode is similar to the linear interpolation mode. Any pair of two axes may be
selected for coordinated motion consisting of linear and circular segments. In addition, a third axis can
be controlled such that it remains tangent to the motion of the selected pair of axes. Note that only one
pair of axes can be specified for coordinated motion at any given time.

The command VM m,n,p where ‘m’ and ‘n’ are the coordinated pair and p is the tangent axis (Note: the
commas which separate m,n and p are not necessary). For example, VM XWZ selects the XW axes for
coordinated motion and the Z-axis as the tangent.

Specifying Vector Segments
The motion segments are described by two commands; VP for linear segments and CR for circular
segments. Once a set of linear segments and/or circular segments have been specified, the sequence is
ended with the command VE. This defines a sequence of commands for coordinated motion.
Immediately prior to the execution of the first coordinated movement, the controller defines the current

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 72

position to be zero for all movements in a sequence. Note: This ‘local’ definition of zero does not affect
the absolute coordinate system or subsequent coordinated motion sequences.

The command, VP xy specifies the coordinates of the end points of the vector movement with respect to
the starting point. The command, CR r,q,d define a circular arc with a radius r, starting angle of q, and a
traversed angle d. The notation for q is that zero corresponds to the positive horizontal direction, and
for both q and d, the counter-clockwise (CCW) rotation is positive.

Up to 511 segments of CR or VP may be specified in a single sequence and must be ended with the
command VE. The motion can be initiated with a Begin Sequence (BGS) command. Once motion starts,
additional segments may be added.

The Clear Sequence (CS) command can be used to remove previous VP and CR commands which were
stored in the buffer prior to the start of the motion. To stop the motion, use the instructions STS or
AB1. ST stops motion at the specified deceleration. AB1 aborts the motion instantaneously.

The Vector End (VE) command must be used to specify the end of the coordinated motion. This
command requires the controller to decelerate to a stop following the last motion requirement. If a VE
command is not given, an Abort (AB1) must be used to abort the coordinated motion sequence.

It is the responsibility of the user to keep enough motion segments in the DMC 1300 sequence buffer to
ensure continuous motion. If the controller receives no additional motion segments and no VE
command, the controller will stop motion instantly at the last vector. There will be no controlled
deceleration. LM? or _LM returns the available spaces for motion segments that can be sent to the
buffer. 511 returned means the buffer is empty and 511 segments can be sent. A zero means the buffer
is full and no additional segments can be sent. As long as the buffer is not full, additional segments
can be sent to the controller through the Command Buffer.

The operand _CS can be used to determine the value of the segment counter. This information is also
available at addresses 018 - 019 of the general registers in the Dual Port RAM.

Specifying Vector Acceleration, Deceleration and Speed:
The commands VS n, VA n, and VD n are used to specify the vector speed, acceleration and
deceleration. The DMC 1300 computes the vector speed based on the two axes specified in the VM
mode. For example, VM YZ designates vector mode for the Y and Z axes. The vector speed for this
example would be computed using the equation:

VS
2
=YS

2
+ZS

2
, where YS and ZS are the speed of the Y and Z axes.

In cases where the acceleration causes the system to 'jerk', the DMC 1300 provides a vector motion
smoothing function. VT is used to set the S-curve smoothing constant for coordinated moves.

Additional Commands
The DMC 1300 provides commands for additional control of vector motion and program control. Note:
Many of the commands used in Vector Mode motion also applies Linear Interpolation motion described
in the previous section.

Trippoints

The command AV n is the ‘After Vector’ trippoint, which halts program execution until the vector
distance of n has been reached.

Specifying Vector Speed for Each Segment

The vector speed may be specified by the immediate command VS. It can also be attached to a motion
segment with the instructions

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 73

 VP x,y, < n

 CR r,θ,δ < n

Both cases assign a vector speed of n count/s to the corresponding motion segment.

Compensating for Differences in Encoder Resolution:

By default, the DMC 1300 uses a scale factor of 1:1 for the encoder resolution when used in vector
mode. If this is not the case, the command, ES can be used to scale the encoder counts. The ES
command accepts two arguments which represent the number of counts for the two encoders used for
vector motion. The smaller ratio of the two numbers will be multiplied by the higher resolution encoder.
For more information, see ES command in Chapter 11, Command Summary.

Tangent Motion:

Several applications, such as cutting, require a third axis (i.e. a knife blade), to remain tangent to the
coordinated motion path. To handle these applications, the DMC 1300 allows one axis to be specified
as the tangent axis. The VM command provides parameter specifications for describing the coordinated
axes and the tangent axis.

VM m,n,p m,n specifies coordinated axes p specifies tangent axis such as X,Y,Z,W
or A,B,C,D,E,F,G,H p=N turns off tangent axis

Before the tangent mode can operate, it is necessary to assign an axis via the VM command and define
its offset and scale factor via the TN m,n command. m defines the scale factor in counts/degree and n
defines the tangent position that equals zero degrees in the coordinated motion plane. The _TN can be
used to return the initial position of the tangent axis.

Example - XY Table Control

Assume an XY table with the Z-axis controlling a knife. The Z-axis has a 2000 quad counts/rev encoder

and has been initialized after power-up to point the knife in the +Y direction. A 180° circular cut is
desired, with a radius of 3000, center at the origin and a starting point at (3000,0). The motion is CCW,

ending at (-3000,0). Note that the 0° position in the XY plane is in the +X direction. This corresponds
to the position -500 in the Z-axis, and defines the offset. The motion has two parts. First, X,Y and Z are
driven to the starting point, and later, the cut is performed. Assume that the knife is engaged with
output bit 0.

Instruction Interpretation

#EXAMPLE Example program

VM XYZ XY coordinate with Z as tangent

TN 2000/360,-500 2000/360 counts/degree, position -500 is 0 degrees in XY plane

CR 3000,0,180 3000 count radius, start at 0 and go to 180 CCW

VE End vector

CB0 Disengage knife

PA 3000,0,_TN Move X and Y to starting position, move Z to initial tangent position

BG XYZ Start the move to get into position

AM XYZ When the move is complete

SB0 Engage knife

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 74

WT50 Wait 50 msec for the knife to engage

BGS Do the c ircular cut

AMS After the coordinated move is complete

CB0 Disengage knife

MG "ALL DONE"

EN End program

Command Summary - Vector Mode Motion
COMMAND DESCRIPTION

VM m,n Specifies the axes for the planar motion where m and n represent the planar axes
and p is the tangent axis.

VP m,n Return coordinate of last point, where m=X,Y,Z or W.

CR r,Θ, ±∆Θ Specifies arc segment where r is the radius, Θ is the starting angle and ∆Θ is the
travel angle. Positive direction is CCW.

VS n Specify vector speed or feedrate of sequence.

VA n Specify vector acceleration along the sequence.

VD n Specify vector deceleration along the sequence.

BGS Begin motion sequence.

CS Clear sequence.

AV n Trippoint for After Relative Vector distance, n.

AMS Holds execution of next command until Motion Sequence is complete.

TN m,n Tangent scale and offset.

ES m,n Ellipse scale factor.

VT S curve smoothing constant for coordinated moves

LM? Return number of available spaces for linear and circular segments in DMC 1300
sequence buffer. Zero means buffer is full. 512 means buffer is empty.

Operand Summary - Vector Mode Motion
OPERAND DESCRIPTION

_VPM The absolute coordinate of the axes at the last intersection along the sequence.

_AV Distance traveled.

_LM Number of available spaces for linear and circular segments in DMC 1300
sequence buffer. Zero means buffer is full. 512 means buffer is empty.

_CS Segment counter - Number of the segment in the sequence, starting at zero.

When AV is used as an operand, _AV returns the distance traveled along the sequence.

The operands _VPX and _VPY can be used to return the coordinates of the last point specified along
the path.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 75

Example:

Traverse the path shown in Fig. 6.3. Feedrate is 20000 counts/sec. Plane of motion is XY

Instruction Interpretation

VM XY Specify motion plane

VS 20000 Specify vector speed

VA 1000000 Specify vector acceleration

VD 1000000 Specify vector deceleration

VP -4000,0 Segment AB

CR 1500,270,-180 Segment BC

VP 0,3000 Segment CD

CR 1500,90,-180 Segment DA

VE End of sequence

BGS Begin Sequence

The resulting motion starts at the point A and moves toward points B, C, D, A. Suppose that we
interrogate the controller when the motion is halfway between the points A and B.

 The value of _AV is 2000

 The value of _CS is 0

 _VPX and _VPY contain the absolute coordinate of the point A

Suppose that the interrogation is repeated at a point, halfway between the points C and D.

 The value of _AV is 4000+1500π+2000=10,712

 The value of _CS is 2

 _VPX,_VPY contain the coordinates of the point C

C (-4000,3000)

R = 1500

B (-4000,0)

D (0,3000)

A (0,0)
Figure 6.3 - The Required Path

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 76

Electronic Gearing
This mode allows up to 8 axes to be electronically geared to one master axis. The master may rotate in
both directions and the geared axes will follow at the specified gear ratio. The gear ratio may be
different for each axis and changed during motion.

The command GAX or GAY or GAZ or GAW (or GAA or GAB or GAC or GAD or GAE or GAF or GAG
or GAH for DMC-1380) specifies the master axis. There may only be one master. GR x,y,z,w specifies
the gear ratios for the slaves where the ratio may be a number between +/-127.9999 with a fractional
resolution of .0001. GR 0,0,0,0 turns off electronic gearing for any set of axes. A limit switch will also
disable electronic gearing for that axis. GR causes the specified axes to be geared to the actual position
of the master. The master axis is commanded with motion commands such as PR, PA or JG.

When the master axis is driven by the controller in the jog mode or an independent motion mode, it is
possible to define the master as the command position of that axis, rather than the actual position. The
designation of the commanded position master is by the letter, C. For example, GACX indicates that the
gearing is the commanded position of X.

An alternative gearing method is to synchronize the slave motor to the commanded vector motion of
several axes performed by GAS. For example, if the X and Y motor form a circular motion, the Z axis may
move in proportion to the vector move. Similarly, if X,Y and Z perform a linear interpolation move, W
can be geared to the vector move.

Electronic gearing allows the geared motor to perform a second independent or coordinated move in
addition to the gearing. For example, when a geared motor follows a master at a ratio of 1:1, it may be
advanced an additional distance with PR, or JG, commands, or VP, or LI.

Command Summary - Electronic Gearing
COMMAND DESCRIPTION

GA n Specifies master axis for gearing where:

n = X,Y,Z or W or A,B,C,D,E,F,G,H for main encoder as master

 n = CX,CY,CZ or CW or CA, CB, CC, CD, CE, CF,CG,CH for commanded
position.

 n = DX,DY,DZ or DW or DA, DB, DC, DD, DE, DF,DG,DH for auxiliary
encoders

 n = S vector move as master

GR x,y,z,w Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.

GR a,b,c,d,e,f,g,h Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.

MR x,y,z,w Trippoint for reverse motion past specified value. Only one field may be used.

MF x,y,z,w Trippoint for forward motion past specified value. Only one field may be
used.

Operand Summary - Electronic Gearing
COMMAND DESCRIPTION

GA n Specifies master axis for gearing where:

n = X,Y,Z or W or A,B,C,D,E,F,G,H for main encoder as master

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 77

 n = CX,CY,CZ or CW or CA, CB, CC, CD, CE, CF,CG,CH for commanded
position.

 n = DX,DY,DZ or DW or DA, DB, DC, DD, DE, DF,DG,DH for auxiliary
encoders

 n = S vector move as master

GR x,y,z,w Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.

GR a,b,c,d,e,f,g,h Sets gear ratio for slave axes. 0 disables electronic gearing for specified axis.

MR x,y,z,w Trippoint for reverse motion past specified value. Only one field may be used.

MF x,y,z,w Trippoint for forward motion past specified value. Only one field may be
used.

Example - Simple Master Slave

Master axis moves 10000 counts at slew speed of 100000 counts/sec. Y is defined as the master. X,Z,W
are geared to master at ratios of 5,-.5 and 10 respectively.

GAY Specify master axes as Y

GR 5,,-.5,10 Set gear ratios

PR ,10000 Specify Y position

SP ,100000 Specify Y speed

BGY Begin motion

Example - Electronic Gearing

Objective: Run two geared motors at speeds of 1.132 and -0.045 times the speed of an external master.
The master is driven at speeds between 0 and 1800 RPM (2000 counts/rev encoder).

Solution: Use a DMC-1330 controller, where the Z-axis is the master and X and Y are the geared axes.

MO Z Turn Z off, for external master

GA Z Specify master axis

GR 1.132,-.045 Specify gear ratios

Now suppose the gear ratio of the X-axis is to change on-the-fly to 2. This can be achieved by
commanding:

GR 2 Specify gear ratio for X axis to be 2

In applications where both the master and the follower are controlled by the DMC 1300 controller, it
may be desired to synchronize the follower with the commanded position of the master, rather than the
actual position. This eliminates the coupling between the axes which may lead to oscillations.

For example, assume that a gantry is driven by two axes, X,Y, on both sides. The X-axis is the master
and the Y-axis is the follower. To synchronize Y with the commanded position of X, use the
instructions:

GA CX Specify master as commanded position of X

GR,1 Set gear ratio for Y as 1:1

PR 3000 Command X motion

BG X Start motion on X axis

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 78

You may also perform profiled position corrections in the electronic gearing mode. Suppose, for
example, that you need to advance the slave 10 counts. Simply command

IP ,10 Specify an incremental position movement of 10 on Y axis.

Under these conditions, this IP command is equivalent to:

PR,10 Specify position relative movement of 10 on Y axis

BGY Begin motion on Y axis

Often the correction is quite large. Such requirements are common when synchronizing cutting knives
or conveyor belts.

Example - Synchronize two conveyor belts with trapezoidal velocity
correction.

GAX Define master axis as X

GR,2 Set gear ratio 2:1 for Y

PR,300 Specify correction distance

SP,5000 Specify correction speed

AC,100000 Specify correction acceleration

DC,100000 Specify correction deceleration

BGY Start correction

 Contour Mode
The DMC 1300 also provides a contouring mode. This mode allows any arbitrary position curve to be
prescribed for 1 to 8 axes. This is ideal for following computer generated paths such as parabolic,
spherical or user-defined profiles. The path is not limited to straight line and arc segments and the path
length may be infinite.

Specifying Contour Segments
The Contour Mode is specified with the command, CM. For example, CMXZ specifies contouring on
the X and Z axes. Any axes that are not being used in the contouring mode may be operated in other
modes.

A contour is described by position increments which are described with the command, CD x,y,z,w over
a time interval, DT n. The parameter, n, specifies the time interval. The time interval is defined as 2

n
 ms,

where n is a number between 1 and 8. The controller performs linear interpolation between the specified
increments, where one point is generated for each millisecond.

The contour mode may also be accessed through the Contour Buffer of the Dual Port RAM. Contour
data may be sent to this buffer to generate an arbitrary motion profile. The Contour Buffer holds the
contour record sent by the host during the contour mode, and is set and cleared by the Contour
Semaphore. An error in the contour mode can be checked at Bit 2 of the General Status (010), with the
corresponding error code found at 012. A list of the Contour Buffer addresses can be found in Chapter
4.

Consider the trajectory shown in Fig. 6.4. The position X may be described by the points:

Point 1 X=0 at T=0ms

Point 2 X=48 at T=4ms

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 79

Point 3 X=288 at T=12ms

Point 4 X=336 at T=28ms

The same trajectory may be represented by the increments

Increment 1 DX=48 Time=4 DT=2

Increment 2 DX=240 Time=8 DT=3

Increment 3 DX=48 Time=16 DT=4

When the controller receives the command to generate a trajectory along these points, it interpolates
linearly between the points. The resulting interpolated points include the position 12 at 1 msec,
position 24 at 2 msec, etc.

The programmed commands to specify the above example are:

#A

CMX Specifies X axis for contour mode

DT 2 Specifies first time interval, 22 ms

CD 48;WC Specifies first position increment

DT 3 Specifies second time interval, 23 ms

CD 240;WC Specifies second position increment

DT 4 Specifies the third time interval, 24 ms

CD 48;WC Specifies the third position increment

DT0;CD0 Exits contour mode

EN

POSITION
(COUNTS)

240

96

48

192

TIME (ms)

0 4 8 12 16 20 24 28

288

336

SEGMENT 1 SEGMENT 2 SEGMENT 3

Figure 6.4 - The Required Trajectory

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 80

Additional Commands
The command, WC, is used as a trippoint "When Complete". This allows the DMC 1300 to use the
next increment only when it is finished with the previous one. Zero parameters for DT followed by zero
parameters for CD exit the contour mode.

If no new data record is found and the controller is still in the contour mode, the controller waits for new
data. No new motion commands are generated while waiting. If bad data is received, the controller
responds with a ?.

Command Summary - Contour Mode
COMMAND DESCRIPTION

CM XYZW Specifies which axes for contouring mode. Any non-contouring axes may be
operated in other modes.

CM
ABCDEFGH

Contour axes for DMC-1380

CD x,y,z,w Specifies position increment over time interval. Range is +/-32,000. Zero ends
contour mode.

CD
a,b,c,d,e,f,g,h

Position increment data for DMC-1380

DT n Specifies time interval 2n msec for position increment, where n is an integer between
1 and 8. Zero ends contour mode. If n does not change, it does not need to be
specified with each CD.

W C Waits for previous time interval to be complete before next data record is
processed.

Operand Summary - Contour Mode
OPERAND DESCRIPTION

_CS Return segment number

General Velocity Profiles

The Contour Mode is ideal for generating any arbitrary velocity profiles. The velocity profile can be
specified as a mathematical function or as a collection of points.

The design includes two parts: Generating an array with data points and running the program.

Generating an Array - An Example

Consider the velocity and position profiles shown in Fig. 6.5. The objective is to rotate a motor a
distance of 6000 counts in 120 ms. The velocity profile is sinusoidal to reduce the jerk and the system
vibration. If we describe the position displacement in terms of A counts in B milliseconds, we can
describe the motion in the following manner:

 ()ω π= −Α
Β Β1 2cos()

 Χ = −AT
B

A B2 2π πsin ()

Note: ω is the angular velocity; X is the position; and T is the variable, time, in milliseconds.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 81

In the given example, A=6000 and B=120, the position and velocity profiles are:

 X = 50T - (6000/2π) sin (2π T/120)

Note that the velocity, ω, in count/ms, is

 ω = 50 [1 - cos 2π T/120]

Figure 6.5 - Velocity Profile with Sinusoidal Acceleration

The DMC 1300 can compute trigonometric functions. However, the argument must be expressed in
degrees. Using our example, the equation for X is written as:

 X = 50T - 955 sin 3T

A complete program to generate the contour movement in this example is given below. To generate an
array, we compute the position value at intervals of 8 ms. This is stored at the array POS. Then, the
difference between the positions is computed and is stored in the array DIF. Finally the motors are run
in the contour mode.

Contour Mode Example:
Instruction Interpretation

#POINTS Program defines X points

DM POS[16] Allocate memory

DM DIF[15]

C=0 Set initial conditions, C is index

T=0 T is time in ms

#A

V1=50*T

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 82

V2=3*T Argument in degrees

V3=-955*@SIN[V2]+V1 Compute position

V4=@INT[V3] Integer value of V3

POS[C]=V4 Store in array POS

T=T+8

C=C+1

JP #A,C<16

#B Program to find position differences

C=0

#C

D=C+1

DIF[C]=POS[D]-POS[C] Compute the difference and store

C=C+1

JP #C,C<15

EN End first program

#RUN Program to run motor

CMX Contour Mode

DT3 4 millisecond intervals

C=0

#E

CD DIF[C] Contour Distance is in DIF

W C Wait for completion

C=C+1

JP #E,C<15

DT0

CD0 Stop Contour

EN End the program

Teach (Record and Play-Back)

Several applications require teaching the machine a motion trajectory. Teaching can be accomplished
using the DMC 1300 automatic array capture feature to capture position data. The captured data may
then be played back in the contour mode. The following array commands are used:

DM C[n] Dimension array

RA C[] Specify array for automatic record (up to 4 for DMC-1340; 8 for DMC-
1380)

RD _TPX Specify data for capturing (such as _TPX or _TPZ)

RC n,m Specify capture time interval where n is 2n msec, m is number of records to
be captured

RC? or _RC Returns a 1 if recording

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 83

Record and Playback Example:
Instruction Interpretation

#RECORD Begin Program

DP0 Define position for X axis to be 0

DA*[] De-allocate all arrays

DM XPOS [501] Dimension 501 element array called XPOS

RA XPOS [] Record Elements into XPOS array

RD_TPX Element to be recorded is encoder position of X axis

MOX Motor off for X axis

RC2 Begin Recording with a sample rate of 2 msec

#LOOP1;JP#LOOP1,_RC=1 Loop until all elements have been recorded

#COMPUTE Routine to determine the difference between consecutive points

DM DX [500] Dimension a 500 element array to hold contour points

I = 0 Set loop counter

#LOOP2 Loop to calculate the difference

DX[I]=XPOS[I+1]-XPOS[I] Calculate difference

I=I+1 Update loop counter

JP#LOOP2,I<500 Continue looping until DX is full

#PLAYBK Routine to play back motion that was recorded

SHX Servo Here

WT1000 Wait 1 sec (1000 msec)

CMX Specify contour mode on X axis

DT2 Set contour data rate to be 2 msec

I=0 Set array index to 0

#LOOP3 Subroutine to execute contour points

CD DX[I];WC Contour data command; Wait for next contour point

I=I+1 Update index

JP#LOOP3,I<500 Continue until all array elements have been executed

DT0 Set contour update rate to 0

CD0 Disable the contour mode (combination of DT0 and CD0)

EN End program

For additional information about automatic array capture, see Chapter 7, Arrays.

Stepper Motor Operation
When configured for stepper motor operation, several commands are interpreted differently than from
servo mode. The following describes operation with stepper motors.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 84

Specifying Stepper Motor Operation
In order to command stepper motor operation, the appropriate stepper mode jumpers must be installed.
See chapter 2 for this installation.

Stepper motor operation is specified by the command MT. The argument for MT is as follows:

2 specifies a stepper motor with active low step output pulses

-2 specifies a stepper motor with active high step output pulses

Stepper Motor Smoothing

The command, KS, provides stepper motor smoothing. The effect of the smoothing can be thought of
as a simple Resistor-Capacitor (single pole) filter. The filter occurs after the motion profiler and has the
effect of smoothing out the spacing of pulses for a more smooth operation of the stepper motor. Use of
KS is most applicable when operating in full step or half step operation. KS will cause the step pulses
to be delayed in accordance with the time constant specified.

When operating with stepper motors, you will always have some amount of stepper motor smoothing,
KS. Since this filtering effect occurs after the profiler, the profiler may be ready for additional moves
before all of the step pulses have gone through the filter. It is important to consider this effect since
steps may be lost if the controller is commanded to generate an additional move before the previous
move has been completed. See the discussion below, Monitoring Generated Pulses vs Commanded
Pulses.

The general motion smoothing command, IT, can also be used. The purpose of the command, IT, is to
smooth out the motion profile and decrease 'jerk' due to acceleration.

Monitoring Generated Pulses vs Commanded Pulses

For proper controller operation, it is necessary to make sure that the controller has completed
generating all step pulses before making additional moves. This is most particularly important if you are
moving back and forth. For example, when operating with servo motors, the trippoint AM (After
Motion) is used to determine when the motion profiler is complete and is prepared to execute a new
motion command. However when operating in stepper mode, the controller may still be generating step
pulses when the motion profiler is complete. This is caused by the stepper motor smoothing filter, KS.
To understand this, consider the steps the controller executes to generate step pulses:

First, the controller generates a motion profile in accordance with the motion commands.

Second, the profiler generates pulses as prescribed by the motion profile. The pulses that are generated
by the motion profiler can be monitored by the command, RP (Reference Position). RP gives the
absolute value of the position as determined by the motion profiler. The command, DP, can be used to
set the value of the reference position. For example, DP 0, defines the reference position of the X axis to
be zero.

Third, the output of the motion profiler is filtered by the stepper smoothing filter. This filter adds a
delay in the output of the stepper motor pulses. The amount of delay depends on the parameter which
is specified by the command, KS. As mentioned earlier, there will always be some amount of stepper
motor smoothing. The default value for KS is 2 which corresponds to a time constant of 6 sample
periods.

Fourth, the output of the stepper smoothing filter is buffered and is available for input to the stepper
motor driver. The pulses which are generated by the smoothing filter can be monitored by the
command, TD (Tell Dual). TD gives the absolute value of the position as determined by actual output
of the buffer. The command, DP sets the value of the step count register as well as the value of the
reference position. For example, DP 0, defines the reference position of the X axis to be zero.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 85

Motion Profiler Stepper Smoothing Filter
(Adds a Delay) Output Buffer

Step Count Register (TD)Reference Position (RP)

Output
(To Stepper Driver)

Motion Complete Trippoint

When used in stepper mode, the MC command will hold up execution of the proceeding commands
until the controller has generated the same number of steps out of the step count register as specified in
the commanded position. The MC trippoint (Motion Complete) is generally more useful than AM
trippoint (After Motion) since the step pulses can be delayed from the commanded position due to
stepper motor smoothing.

Using an Encoder with Stepper Motors
An encoder may be used on a stepper motor to check the actual motor position with the commanded
position. If an encoder is used, it must be connected to the main encoder input. Note: The auxiliary
encoder is not available while operating with stepper motors. The position of the encoder can be
interrogated by using the command, TP. The position value can be defined by using the command, DE.

Note: Closed loop operation with a stepper motor is not possible.

Command Summary - Stepper Motor Operation
COMMAND DESCRIPTION

DE Define Encoder Position (When using an encoder)

DP Define Reference Position and Step Count Register

IT Motion Profile Smoothing - Independent Time Constant

KS Stepper Motor Smoothing

MT Motor Type (2,-2,2.5 or -2.5 for stepper motors)

RP Report Commanded Position

TD Report number of step pulses generated by controller

TP Tell Position of Encoder

Operand Summary - Stepper Motor Operation
OPERAND DESCRIPTION

_DEx Contains the value of the step count register

_DPx Contains the value of the main encoder

_ITx Contains the value of the Independent Time constant for the 'x' axis

_KS Contains the value of the Stepper Motor Smoothing Constant for the 'x' axis

_MT Contains the motor type value for the 'x' axis

_RP Contains the commanded position generated by the profiler

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 86

_TD Contains the value of the step count register

_TP Contains the value of the main encoder

Dual Loop (Auxiliary Encoder)
The DMC 1300 provides an interface for a second encoder for each axis except for axes configured for
stepper motor operation. When used, the second encoder is typically mounted on the motor or the
load, but may be mounted in any position. The most common use for the second encoder is backlash
compensation, described below.

The auxiliary encoder may also be used for gearing. In this case, the auxiliary encoder input is used to
monitor an encoder which is not under control of the DMC 1300. To use the auxiliary encoder for
gearing, the master axis is specified as the auxiliary encoder and GR is used to specify the gear ratios.
For more information, see previous section Electronic Gearingon page 76.

The second encoder may be a standard quadrature type, or it may provide pulse and direction. The
controller also offers the provision for inverting the direction of the encoder rotation. The main and the
auxiliary encoders are configured with the CE command. The command form is CE x,y,z,w (or
a,b,c,d,e,f,g,h for controllers with more than 4 axes) where the parameters x,y,z,w each equal the sum of
two integers m and n. m configures the main encoder and n configures the auxiliary encoder.

Using the CE Command

m= Main Encoder n= Second Encoder

0 Normal quadrature 0 Normal quadrature

1 Pulse & direction 4 Pulse & direction

2 Reverse quadrature 8 Reversed quadrature

3 Reverse pulse & direction 12 Reversed pulse & direction

For example, to configure the main encoder for reversed quadrature, m=2, and a second encoder of
pulse and direction, n=4, the total is 6, and the command for the X axis is

 CE 6

Additional Commands for the Auxiliary Encoder

The command, DE x,y,z,w, can be used to define the position of the auxiliary encoders. For exa mple,

 DE 0,500,-30,300

sets their initial values.

The positions of the auxiliary encoders may be interrogated with the command, DE?. For example

 DE ?,,?

returns the value of the X and Z auxiliary encoders.

The auxiliary encoder position may be assigned to variables with the instructions

 V1= _DEX

The command, TD XYZW, returns the current position of the auxiliary encoder.

The command, DV XYZW, configures the auxiliary encoder to be used for backlash compensation.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 87

Backlash Compensation
There are two methods for backlash compensation using the auxiliary encoders:

Continuous dual loop

Sampled dual loop

To illustrate the problem, consider a situation in which the coupling between the motor and the load has
a backlash. To compensate for the backlash, position encoders are mounted on both the motor and the
load.

The continuous dual loop combines the two feedback signals to achieve stability. This method
requires careful system tuning, and depends on the magnitude of the backlash. However, once
successful, this method compensates for the backlash continuously.

The second method, the sampled dual loop, reads the load encoder only at the end point and performs a
correction. This method is independent of the size of the backlash. However, it is effective only in
point-to-point motion systems which require position accuracy only at the endpoint.

Example - Continuous Dual Loop

Note: In order to have a stable continuous dual loop system, the encoder on the motor must be of
equal or higher resolution than the encoder on the load.

Connect the load encoder to the main encoder port and connect the motor encoder to the dual encoder
port. The dual loop method splits the filter function between the two encoders. It applies the KP
(proportional) and KI (integral) terms to the position error, based on the load encoder, and applies the
KD (derivative) term to the motor encoder. This method results in a stable system.

The dual loop method is activated with the instruction DV (Dual Velocity), where

 DV 1,1,1,1

activates the dual loop for the four axes and

 DV 0,0,0,0

disables the dual loop.

Note that the dual loop compensation depends on the backlash magnitude, and in extreme cases will
not stabilize the loop. The proposed compensation procedure is to start with KP=0, KI=0 and to
maximize the value of KD under the condition DV1. Once KD is found, increase KP gradually to a
maximum value, and finally, increase KI, if necessary.

Example - Sampled Dual Loop

In this example, we consider a linear slide which is run by a rotary motor via a lead screw. Since the lead
screw has a backlash, it is necessary to use a linear encoder to monitor the position of the slide. For
stability reasons, it is best to use a rotary encoder on the motor.

Connect the rotary encoder to the X-axis and connect the linear encoder to the auxiliary encoder of X.
Assume that the required motion distance is one inch, and that this corresponds to 40,000 counts of the
rotary encoder and 10,000 counts of the linear encoder.

The design approach is to drive the motor a distance, which corresponds to 40,000 rotary counts. Once
the motion is complete, the controller monitors the position of the linear encoder and performs position
corrections.

This is done by the following program.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 88

Instruction Interpretation

#DUALOOP Label

CE 0 Configure encoder

DE0 Set initial value

PR 40000 Main move

BGX Start motion

#Correct Correction loop

AMX Wait for motion completion

V1=10000-_DEX Find linear encoder error

V2=-_TEX/4+V1 Compensate for motor error

JP#END,@ABS[V2]<2 Exit if error is small

PR V2*4 Correction move

BGX Start correction

JP#CORRECT Repeat

#END

EN

Command Summary - Using the Auxiliary Encoder
COMMAND DESCRIPTION

CE Configure Encoder Type

DE Define dual (auxiliary) encoder posit ion

DV Set continous dual loop mode - see description below

GA Set master axis for gearing - the auxiliary encoder input can be used for gearing

GR Set gear ratio for gearing - the auxiliary encoder input can be used for gearing

TD Tell dual (auxiliary) encoder input position.

Operand Summary - Using the Auxiliary Encoder
OPERAND DESCRIPTION

_CEx Contains the encoder configuration for the specified axis

_DEx Contains the current position of the specified auxiliary encoder

_DVx Contains a '1' or '0' if the specified axis is in continuous dual loop operation.

_GRx Contains the value of the gear ratio for the specified axis

_TDx Contains the position of the specified auxiliary encoder.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 89

Motion Smoothing
The DMC 1300 controller allows the smoothing of the velocity profile to reduce the mechanical
vibration of the system.

Trapezoidal velocity profiles have acceleration rates which change abruptly from zero to maximum
value. The discontinuous acceleration results in jerk which causes vibration. The smoothing of the
acceleration profile leads to a continuous acceleration profile and reduces the mechanical shock and
vibration.

Using the IT and VT Commands (S curve profiling):

When operating with servo motors, motion smoothing can be accomplished with the IT and VT
command. These commands filter the acceleration and deceleration functions to produce a smooth
velocity profile. The resulting velocity profile, known as S curve, has continuous acceleration and
results in reduced mechanical vibrations.

The smoothing function is specified by the following commands:

IT x,y,z,w Independent time constant

VT n Vector time constant

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and the command,
VT, is used to smooth vector moves of the type VM and LM.

The smoothing parameters, x,y,z,w and n are numbers between 0 and 1 and determine the degree of
filtering. The maximum value of 1 implies no filtering, resulting in trapezoidal velocity profiles. Smaller
values of the smoothing parameters imply heavier filtering and smoother moves.

The following example illustrates the effect of smoothing. Fig. 6.6 shows the trapezoidal velocity profile
and the modified acceleration and velocity.

Note that the smoothing process results in longer motion time.

Example - Smoothing

PR 20000 Position

AC 100000 Acceleration

DC 100000 Deceleration

SP 5000 Speed

IT .5 Filter for S-curve

BG X Begin

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 90

ACCELERATION

VELOCITY

VELOCITY

VELOCITY

ACCELERATION

Figure 6.6 - Trapezoidal velocity and smooth velocity profiles

Using the KS Command (Step Motor Smoothing):

When operating with step motors, motion smoothing can be accomplished with the command, KS. The
KS command smoothes the frequency of step motor pulses. Similar to the commands, IT and VT, this
produces a smooth velocity profile.

The step motor smoothing is specified by the following command:

KS x,y,z,w where x,y,z,w is an integer from 1 to 16 and represents the amount of
smoothing

The command, IT, is used for smoothing independent moves of the type JG, PR, PA and the command,
VT, is used to smooth vector moves of the type VM and LM.

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 91

The smoothing parameters, x,y,z,w and n are numbers between 0 and 16 and determine the degree of
filtering. The minimum value of 1 implies no filtering, resulting in trapezoidal velocity profiles. Larger
values of the smoothing parameters imply heavier filtering and smoother moves.

Note that KS is valid only for step motors.

Homing
The Find Edge (FE) and Home (HM) instructions may be used to home the motor to a mechanical
reference. This reference is connected to the Home input line. The HM command initializes the motor to
the encoder index pulse in addition to the Home input. The configure command (CN) is used to define
the polarity of the home input.

The Find Edge (FE) and Home (HM) command status can be read from the Dual Port RAM in the Axis
Buffers. These buffers include information on the state of the switch, as well as what phase of homing
an axis is currently performing.

The Find Edge (FE) instruction is useful for initializing the motor to a home switch. The home switch is
connected to the Homing Input. When the Find Edge command and Begin is used, the motor will
accelerate up to the slew speed and slew until a transition is detected on the Homing line. The motor
will then decelerate to a stop. A high deceleration value must be input before the find edge command is
issued for the motor to decelerate rapidly after sensing the home switch. The velocity profile generated
is shown in Fig. 6.7.

The Home (HM) command can be used to position the motor on the index pulse after the home switch is
detected. This allows for finer positioning on initialization. The command sequence HM and BG
causes the following sequence of events to occur.

1. Upon begin, motor accelerates to the slew speed. The direction of its motion is
determined by the state of the homing input. A zero (GND) will cause the motor
to start in the forward direction; +5V will cause it to start in the reverse direction.
The CN command is used to define the polarity of the home input.

2. Upon detecting the home switch changing state, the motor begins decelerating
to a stop.

3. The motor then traverses very slowly back until the home switch toggles again.

4. The motor then traverses forward until the encoder index pulse is detected.

5. The DMC 1300 defines the home position (0) as the position at which the index
was detected.

Example:

Instruction Interpretation

#HOME Label

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

SP 5000 Speed for Home Search

HM X Home X

BG X Begin Motion

AM X After Complete

MG "AT HOME" Send Message

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 92

EN End

#EDGE Label

AC 2000000 Acceleration rate

DC 2000000 Deceleration rate

SP 8000 Speed

FE Y Find edge command

BG Y Begin motion

AM Y After complete

MG "FOUND HOME" Print message

DP,0 Define position as 0

EN End

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 93

POSITION

POSITION

POSITION

POSITION

POSITION

HOME SWITCH

INDEX PULSES

MOTION REVERSE
TOWARD HOME
 DIRECTION

MOTION TOWARD INDEX
 DIRECTION

MOTION BEGINS
TOWARD HOME
 DIRECTION

Figure 6.7 - Motion intervals in the Home sequence

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 94

High Speed Position Capture (Latch)
Often it is desirable to capture the position precisely for registration applications. The DMC 1300
provides a position latch feature. This feature allows the position of X,Y,Z or W to be captured within
25 microseconds of an external low input signal. The general inputs 1 through 4, and 9 through 12
correspond to each axis.

 IN1 X-axis latch IN 9 E-axis latch

 IN2 Y-axis latch IN10 F-axis latch

 IN3 Z-axis latch IN11 G-axis latch

 IN4 W-axis latch IN12 H-axis latch

Note: To insure a position capture within 25 microseconds, the input signal must be a transition from
high to low.

Latch information can be read directly from the Dual Port RAM. Bit 2 of the Status #2 address in the
axis buffer will indicate when the latch is armed. The latched position is also available in the
corresponding axis buffer.

The DMC 1300 software commands, AL and RL, are used to arm the latch and report the latched
position. The steps to use the latch are as follows:

1. Give the AL XYZW command, or ABCDEFGH for DMC-1380, to arm the latch for
the specified axis or axes.

2. Test to see if the latch has occurred (Input goes low) by using the _AL X or Y or
Z or W command. Example, V1=_ALX returns the state of the X latch into V1.
V1 is 1 if the latch has not occurred.

3. After the latch has occurred, read the captured position with the RL XYZW
command or _RL XYZW.

Note: The latch must be re-armed after each latching event.

Position Latch Example:
Instruction Interpretation

#Latch Latch program

JG,5000 Jog Y

BG Y Begin motion on Y axis

AL Y Arm Latch for Y axis

#Wait #Wait label for loop

JP #Wait,_ALY=1 Jump to #Wait label if latch has not occurred

Result=_RLY Set value of variable ‘Result’ equal to the report position of y axis

Result= Print result

EN End

DMC 1300 Chapter 6 Programming Motion •• Error! Main Document Only. - 95

THIS PAGE LEFT BLANK INTENTIONALLY

DMC1000 Chapter 7 Application Programming 7 •• 97

Chapter 7 Application Programming

Overview
The DMC 1300 provides a powerful programming language that allows users to customize the controller
for their particular application. Programs can be downloaded into the DMC 1300 memory freeing the
host for other tasks. However, the VME host can send commands to the controller at any time, even
while a program is being executed.

In addition to standard motion commands, the DMC 1300 provides commands that allow the DMC 1300
to make its own decisions. These commands include conditional jumps, event triggers and subroutines.
For example, the command JP#LOOP, n<10 causes a jump to the label #LOOP if the variable n is less
than 10.

For greater programming flexibility, the DMC 1300 provides user-defined variables, arrays and arithmetic
functions. For example, with a cut-to-length operation, the length can be specified as a variable in a
program which the operator can change as necessary.

The following sections in this chapter discuss all aspects of creating applications programs.

Using the DMC 1300 Editor to Enter Programs
Application programs for the DMC 1300 may be created and edited either using the COMM 1300 editor
or by writing directly to the Program Buffer.

In the COMM 1300 software, the DMC 1300 provides a line Editor for entering and modifying programs.
The Edit mode is entered with the ED instruction. The ED command can only be given when the
controller is not running a program.

In the Edit Mode, each program line is automatically numbered sequentially starting with 000. If no
parameter follows the ED command, the editor prompter will default to the last line of the program in
memory. If desired, the user can edit a specific line number or label by specifying a line number or label
following ED.

Instruction Interpretation

ED Puts Editor at end of last program

ED 5 Puts Editor at line 5

ED #BEGIN Puts Editor at label #BEGIN

DMC1000 Chapter 7 Application Programming 7 •• 98

PROGRAM MEMORY SPACE FOR THE DMC 1300:
DMC-1040 500 lines x 40 characters per line

DMC-1080 1000 lines x 80 characters per line

DMC-1040-MX 2000 lines x 40 characters per line

Line numbers appear as 000,001,002 and so on. Program commands are entered following the line
numbers. Multiple commands may be given on a single line as long as the total number of characters
doesn't exceed the limits given above.

While in the Edit Mode, the programmer has access to special instructions for saving, inserting and
deleting program lines. These special instructions are listed below:

Edit Mode Commands
<RETURN>

Typing the return or enter key causes the current line of entered instructions to be saved. The editor
will automatically advance to the next line. Thus, hitting a series of <RETURN> will cause the editor to
advance a series of lines. Note, changes on a program line will not be saved unless a <return> is given.

<cntrl>P

The <cntrl>P command moves the editor to the previous line.

<cntrl>I

The <cntrl>I command inserts a line above the current line. For example, if the editor is at line number 2
and <cntrl>I is applied, a new line will be inserted between lines 1 and 2. This new line will be labeled
line 2. The old line number 2 is renumbered as line 3.

<cntrl>D

The <cntrl>D command deletes the line currently being edited. For example, if the editor is at line
number 2 and <cntrl>D is applied, line 2 will be deleted. The previous line number 3 is now renumbered
as line number 2.

<cntrl>Q

The <cntrl>Q quits the editor mode. In response, the DMC 1300 will return a colon.

Programs may also be created by writing the ED command directly to the Program Buffer. This places
the controller in the edit mode. The following commands are used to edit or create application programs
in the Program Buffer.

(9A hex) Deletes a line

(99 hex) Inserts a line before the current one

(9B hex) Displays the previous line

(9C hex) Exits the Edit subsystem

(9D hex) Saves a line

When creating a program, the first program line is loaded into the Program Buffer. 9D is then written to
the Command Buffer and set by the Command Semaphore. This stores the first line in the application
program. The second line is then written in the same manner. When editing a program, the current line
is automatically displayed in the Program Buffer upon sending the ED command. This line is then
edited using the same commands.

DMC1000 Chapter 7 Application Programming 7 •• 99

The following example shows how to load this simple program into the Program Buffer of a DMC 1340 in
ASCII.

#TEST

MG”TEST 1”

IP1000

EN

1. Write the ED command to the controller Command Buffer to enter the editor mode.

 Address Value (hex) Characters
 40 45 E
 41 44 D
 42 0D Return

2. Set the Command Semaphore (001) to load the command.

 Address Value (hex) Characters
 01 80 MSB set high

3. When the Command Semaphore is cleared, write MG”TEST 1” to the Program Buffer.

 Address Value (hex) Characters
 C0 4D M
 C1 47 G
 C3 22 “
 C4 54 T
 C5 45 E
 C6 53 S
 C7 54 T
 C8 20 Space
 C9 31 1
 CA 22 “
 CB 0D Return

4. Write 9D to the Command Buffer to save the line and advance to the next program line.

 Address Value (hex) Characters
 40 9D Save current line
 41 0D Return

5. Set the Command Semaphore (001) to load the command.

 Address Value (hex) Characters
 01 80 MSB set high

6. Wait for the Command Semaphore to clear. Load the command IP1000 into the Program Buffer.

 Address Value (hex) Characters
 C0 49 I
 C1 50 P
 C2 31 1
 C3 30 0
 C4 30 0
 C5 30 0
 C6 0D Return

7. Write 9D to the Command Buffer to save the line and advance to the next program line.

8. Set the Command Semaphore (001) to load the command.

DMC1000 Chapter 7 Application Programming 7 •• 100

9. Wait for the Command Semaphore to clear. Load the command EN into the Program Buffer.

 Address Value (hex) Characters
 C0 45 E
 C1 4E N
 C2 0D Return

10. Write 9D to the Command Buffer to save the line and advance to the next program line.

11. Set the Command Semaphore (001) to load the command.

12. Wait for the Command Semaphore to clear. Write 9C to the Command Buffer to quit the editor
mode. Set the Command Semaphore (001) to the load the command.

13. Write XQ to the Command Buffer to execute the application program.

 Address Value (hex) Characters
 40 58 X
 41 51 Q
 42 0D Return

14. Set the Command Semaphore (001) to load the command and begin execution of the program.

Program Format
A DMC 1300 program consists of DMC 1300 instructions combined to solve a machine control
application. Action instructions, such as starting and stopping motion, are combined with Program
Flow instructions to form the complete program. Program Flow instructions evaluate real-time
conditions, such as elapsed time or motion complete, and alter program flow accordingly.

Each DMC 1300 instruction in a program must be separated by a delimiter. Valid delimiters are the
semicolon (;) or carriage return. The semicolon is used to separate multiple instructions on a single
program line where the maximum number of instructions on a line is limited by 38 characters. A carriage
return enters the final command on a program line.

Using Labels in Programs
All DMC 1300 programs must begin with a label and end with an End (EN) statement. Labels start with
the pound (#) sign followed by a maximum of seven characters. The first character must be a letter;
after that, numbers are permitted. Spaces are not permitted.

The maximum number of labels depends on the controller: 126 for 1-4 axes, 510 for 1-4 axes with the -MX
option, and 254 for controllers with 5 or more axes.

Valid labels
Label

#BEGIN

#SQUARE

#X1

#BEGIN1

Invalid labels
Label Problem

DMC1000 Chapter 7 Application Programming 7 •• 101

#1Square Can not use number to begin a label

#SQUAREPEG Can not use more than 7 characters in a label

Program Example
Instruction Interpretation

#START Beginning of the Program

PR 10000,20000 Specify relative distances on X and Y axes

BG XY Begin Motion

AM Wait for motion complete

WT 2000 Wait 2 sec

JP #START Jump to label START

EN End of Program

The above program moves X and Y 10000 and 20000 units. After the motion is complete, the motors
rest for 2 seconds. The cycle repeats indefinitely until the stop command is issued.

Special Labels

The DMC 1300 has some special labels, which are used to define input interrupt subroutines, limit
switch subroutines, error handling subroutines, and command error subroutines. See section on
”Automatic Subroutines for Monitoring Conditions” on page 114.

#ININT Label for Input Interrupt subroutine

#LIMSWI Label for Limit Switch subroutine

#POSERR Label for excess Position Error subroutine

#MCTIME Label for timeout on Motion Complete trip point

#CMDERR Label for incorrect command subroutine

Commenting Programs

Using the command, NO

The DMC 1300 provides a command, NO, for commenting programs. This command allows the user to
include up to 37 characters on a single line after the NO command and can be used to include comments
from the programmer as in the following example:

#PATH

NO 2-D CIRCULAR PATH

VMXY

NO VECTOR MOTION ON X AND Y

VS 10000

NO VECTOR SPEED IS 10000

VP -4000,0

NO BOTTOM LINE

CR 1500,270,-180

DMC1000 Chapter 7 Application Programming 7 •• 102

NO HALF CIRCLE MOTION

VP 0,3000

NO TOP LINE

CR 1500,90,-180

NO HALF CIRCLE MOTION

VE

NO END VECTOR SEQUENCE

BGS

NO BEGIN SEQUENCE MOTION

EN

NO END OF PROGRAM

Note: The NO command is an actual controller command. Therefore, inclusion of the NO commands will
require process time by the controller.

Using REM Statements with the Galil Terminal Software.

If you are using Galil software to communicate with the DMC 1300 controller, you may also include
REM statements. ‘REM’ statements begin with the word ‘REM’ and may be followed by any comments
which are on the same line. The Galil terminal software will remove these statements when the program
is downloaded to the controller. For example:

#PATH

REM 2-D CIRCULAR PATH

VMXY

REM VECTOR MOTION ON X AND Y

VS 10000

REM VECTOR SPEED IS 10000

VP -4000,0

REM BOTTOM LINE

CR 1500,270,-180

REM HALF CIRCLE MOTION

VP 0,3000

REM TOP LINE

CR 1500,90,-180

REM HALF CIRCLE MOTION

VE

REM END VECTOR SEQUENCE

BGS

REM BEGIN SEQUENCE MOTION

EN

REM END OF PROGRAM

These REM statements will be removed when this program is downloaded to the controller.

DMC1000 Chapter 7 Application Programming 7 •• 103

Executing Programs - Multitasking
The DMC 1300 can run up to four independent programs simultaneously. These programs are called
threads and are numbered 0 through 3, where 0 is the main one. Multitasking is useful for executing
independent operations such as PLC functions that occur independently of motion.

The main thread differs from the others in the following ways:

1. Only the main thread may use the input command, IN.

2. When input interrupts are implemented for limit switches, position errors or command errors, the
subroutines are executed in thread 0.

To begin execution of the various programs, use the following instruction:

 XQ #A, n

Where n indicates the thread number. To halt the execution of any thread, use the instruction

 HX n

where n is the thread number.

Note that both the XQ and HX commands can be performed by an executing program.

Multitasking Example: Producing Waveform on Output 1 Independent of a Move.
Instruction Interpretation

#TASK1 Task1 label

AT0 Initialize reference time

CB1 Clear Output 1

#LOOP1 Loop1 label

AT 10 Wait 10 msec from reference time

SB1 Set Output 1

AT -40 Wait 40 msec from reference time, then initialize reference

CB1 Clear Output 1

JP #LOOP1 Repeat Loop1

#TASK2 Task2 label

XQ #TASK1,1 Execute Task1

#LOOP2 Loop2 label

PR 1000 Define relative distance

BGX Begin motion

AMX After motion done

WT 10 Wait 10 msec

JP #LOOP2,@IN[2]=1 Repeat motion unless Input 2 is low

HX Halt all tasks

The program above is executed with the instruction XQ #TASK2,0 which designates TASK2 as the
main thread (ie. Thread 0). #TASK1 is executed within TASK2.

DMC1000 Chapter 7 Application Programming 7 •• 104

Debugging Programs
The DMC 1300 provides commands and operands which are useful in debugging application programs.
These commands include interrogation commands to monitor program execution, determine the state of
the controller and the contents of the controllers program, array, and variable space. Operands also
contain important status information which can help to debug a program.

Trace Commands

The trace command causes the controller to send each line in a program to the host computer
immediately prior to execution. Tracing is enabled with the command, TR1. TR0 turns the trace
function off. Note: When the trace function is enabled, the line numbers as well as the command line
will be displayed as each command line is executed. The status of the trace command can be read at Bit
6 of the General Status register (010).

Single Stepping

The trace command can be used in conjunction with the Program Buffer Control (028) to single step
through a program. By setting both the trace and the Program Buffer Control to 1, each line will be
displayed as executed, and program flow will not proceed until the Program Buffer has been cleared by
the host. This allows for diagnostics of an application program.

Error Code Command

When there is a program error, the DMC 1300 halts the program execution at the point where the error
occurs. To display the last line number of program execution, issue the command, MG _ED.

The user can obtain information about the type of error condition that occurred by using the command,
TC1. This command reports back a number and a text message which describes the error condition.
The command, TC0 or TC, will return the error code without the text message. For more information
about the command, TC, see the Command Reference.

Error codes are also read through the Dual Port RAM. Bits 1 and 0 of the General Status register (010)
will indicate an error in either an application program or a command respectively. The corresponding
error is found at 012 of the General Registers for a Command Buffer error or 013 of the General Registers
for an Application Program error. A list of all the error codes is found under the TC command.

Stop Code Command

The status of motion for each axis can be determined by using the stop code command, SC. This can be
useful when motion on an axis has stopped unexpectedly. The command SC will return a number
representing the motion status. See the command reference for further information. The command SC1
will return the number and the textual explanation of the motion status. The stop code is also available
in Axis Buffers of the Dual Port RAM.

RAM Memory Interrogation Commands

For debugging the status of the program memory, array memory, or variable memory, the DMC 1300 has
several useful commands. The command, DM ?, will return the number of array elements currently
available. The command, DA ?, will return the number of arrays which can be currently defined. For
example, a standard DMC 1310 will have a maximum of 1600 array elements in up to 14 arrays. If an array
of 100 elements is defined, the command DM ? will return the value 1500 and the command DA ? will
return 13.

DMC1000 Chapter 7 Application Programming 7 •• 105

Operands

In general, all operands provide information which may be useful in debugging an application program.
Below is a list of operands which are particularly valuable for program debugging. To display the value
of an operand, the message command may be used. For example, since the operand, _ED contains the
last line of program execution, the command MG _ED will display this line number.

_ED contains the last line of program execution. Useful to determine where program stopped.

_DL contains the number of available labels.

_UL contains the number of available variables.

_DA contains the number of available arrays.

_DM contains the number of available array elements.

_AB contains the state of the Abort Input

_FLx contains the state of the forward limit switch for the 'x' axis

_RLx contains the state of the reverse limit switch for the 'x' axis

Debugging Example:

The following program has an error. It attempts to specify a relative movement while the X-axis is
already in motion. When the program is executed, the controller stops at line 003. The user can then
query the controller using the command, TC1. The controller responds with the corresponding
explanation:

:ED Edit Mode

000 #A Program Label

001 PR1000 Position Relative 1000

002 BGX Begin

003 PR5000 Position Relative 5000

004 EN End

<cntrl> Q Quit Edit Mode

:XQ #A Execute #A

?003 PR5000 Error on Line 3

:TC1 Tell Error Code

?7 Command not valid
while running.

Command not valid while running

:ED 3 Edit Line 3

003 AMX;PR5000;BGX Add After Motion Done

<cntrl> Q Quit Edit Mode

:XQ #A Execute #A

In the Dual Port RAM, Bit 1of the General Status (010) will be set when the program executes line 3.
Upon being set, the Application Error Code register (013) will read 07, corresponding to the ‘Command
not valid while running’ error. This error will remain valid until cleared by the host or another error
occurs.

DMC1000 Chapter 7 Application Programming 7 •• 106

Program Flow Commands
The DMC 1300 provides instructions to control program flow. The DMC 1300 program sequencer
normally executes program instructions sequentially. The program flow can be altered with the use of
event triggers, trippoints, and conditional jump statements.

Event Triggers & Trippoints
To function independently from the host computer, the DMC 1300 can be programmed to make
decisions based on the occurrence of an event. Such events include waiting for motion to be comp lete,
waiting for a specified amount of time to elapse, or waiting for an input to change logic levels.

The DMC 1300 provides several event triggers that cause the program sequencer to halt until the
specified event occurs. Normally, a program is automatically executed sequentially one line at a time.
When an event trigger instruction is decoded, however, the actual program sequence is halted. The
program sequence does not continue until the event trigger is "tripped". For example, the motion
complete trigger can be used to separate two move sequences in a program. The commands for the
second move sequence will not be executed until the motion is complete on the first motion sequence.
In this way, the DMC 1300 can make decisions based on its own status or external events without
intervention from a host computer.

DMC1000 Chapter 7 Application Programming 7 •• 107

DMC 1300 Event Triggers
Command Function

AM X Y Z W or S

(A B C D E F G H)

Halts program execution until motion is complete on the
specified axes or motion sequence(s). AM with no
parameter tests for motion complete on all axes. This
command is useful for separating motion sequences in a
program.

AD X or Y or Z or W

(A or B or C or D or E or F or G or H)

Halts program execution until position command has
reached the specified relative distance from the start of
the move. Only one axis may be specified at a time.

AR X or Y or Z or W

(A or B or C or D or E or F or G or H)

Halts program execution until after specified distance
from the last AR or AD command has elapsed. Only
one axis may be specified at a time.

AP X or Y or Z or W

(A or B or C or D or E or F or G or H)

Halts program execution until after absolute position
occurs. Only one axis may be specified at a time.

MF X or Y or Z or W

(A or B or C or D or E or F or G or H)

Halt program execution until after forward motion
reached absolute position. Only one axis may be
specified. If position is already past the point, then MF
will trip immediately. Will function on geared axis.

MR X or Y or Z or W

(A or B or C or D or E or F or G or H)

Halt program execution until after reverse motion
reached absolute position. Only one axis may be
specified. If position is already past the point, then MR
will trip immediately. Will function on geared axis.

MC X or Y or Z or W

 (A or B or C or D or E or F or G or H)

Halt program execution until after the motion profile has
been completed and the encoder has entered or passed
the specified position. TW x,y,z,w sets timeout to
declare an error if not in position. If timeout occurs,
then the trippoint will clear and the stopcode will be set
to 99. An application program will jump to label
#MCTIME.

AI +/- n Halts program execution until after specified input is at
specified logic level. n specifies input line. Positive is
high logic level, negative is low level. n=1 through 8 for
DMC-1010 to 1040. n=1 through 24 for DMC-1050 to
1080.

AS X Y Z W S

(A B C D E F G H)

Halts program execution until specified axis has reached
its slew speed.

AT +/-n Halts program execution until n msec from reference
time. AT 0 sets reference. AT n waits n msec from
reference. AT -n waits n msec from reference and sets
new reference after elapsed time.

AV n Halts program execution until specified distance along a
coordinated path has occurred.

WT n Halts program execution until specified time in msec has
elapsed.

DMC1000 Chapter 7 Application Programming 7 •• 108

Event Trigger Examples:

Event Trigger - Multiple Move Sequence

The AM trippoint is used to separate the two PR moves. If AM is not used, the controller returns a ? for
the second PR command because a new PR cannot be given until motion is complete.

Instruction Interpretation

#TWOMOVE Label

PR 2000 Position Command

BGX Begin Motion

AMX Wait for Motion Complete

PR 4000 Next Position Move

BGX Begin 2nd move

EN End program

Event Trigger - Set Output after Distance

Set output bit 1 after a distance of 1000 counts from the start of the move. The accuracy of the trippoint
is the speed multiplied by the sample period.

Instruction Interpretation

#SETBIT Label

SP 10000 Speed is 10000

PA 20000 Specify Absolute position

BGX Begin motion

AD 1000 Wait until 1000 counts

SB1 Set output bit 1

EN End program

Event Trigger - Repetitive Position Trigger

To set the output bit every 10000 counts during a move, the AR trippoint is used as shown in the next
example.

Instruction Interpretation

#TRIP Label

JG 50000 Specify Jog Speed

BGX;n=0 Begin Motion

#REPEAT # Repeat Loop

AR 10000 Wait 10000 counts

TPX Tell Position

SB1 Set output 1

WT50 Wait 50 msec

CB1 Clear output 1

n=n+1 Increment counter

DMC1000 Chapter 7 Application Programming 7 •• 109

JP #REPEAT,n<5 Repeat 5 times

STX Stop

EN End

DMC1000 Chapter 7 Application Programming 7 •• 110

Event Trigger - Start Motion on Input

This example waits for input 1 to go low and then starts motion. Note: The AI command actually halts
execution of the program until the input occurs. If you do not want to halt the program sequences, you
can use the Input Interrupt function (II) or use a conditional jump on an input, such as JP #GO,@IN[1] =
-1.

Instruction Interpretation

#INPUT Program Label

AI-1 Wait for input 1 low

PR 10000 Position command

BGX Begin motion

EN End program

Event Trigger - Set output when At speed

Instruction Interpretation

#ATSPEED Program Label

JG 50000 Specify jog speed

AC 10000 Acceleration ra te

BGX Begin motion

ASX Wait for at slew speed 50000

SB1 Set output 1

EN End program

Event Trigger - Change Speed along Vector Path

The following program changes the feedrate or vector speed at the specified distance along the vector.
The vector distance is measured from the start of the move or from the last AV command.

Instruction Interpretation

#VECTOR Label

VMXY;VS 5000 Coordinated path

VP 10000,20000 Vector position

VP 20000,30000 Vector position

VE End vector

BGS Begin sequence

AV 5000 After vector distance

VS 1000 Reduce speed

EN End

DMC1000 Chapter 7 Application Programming 7 •• 111

Event Trigger - Multiple Move with Wait

This example makes multiple relative distance moves by waiting for each to be complete before
executing new moves.

Instruction Interpretation

#MOVES Label

PR 12000 Distance

SP 20000 Speed

AC 100000 Acceleration

BGX Start Motion

AD 10000 Wait a distance of 10,000 counts

SP 5000 New Speed

AMX Wait until motion is completed

WT 200 Wait 200 ms

PR -10000 New Position

SP 30000 New Speed

AC 150000 New Acceleration

BGX Start Motion

EN End

Example - creating an output Waveform Using AT

The following program causes Output 1 to be high for 10 msec and low for 40 msec. The cycle repeats
every 50 msec.

Instruction Interpretation

#OUTPUT Program label

AT0 Initialize time reference

SB1 Set Output 1

#LOOP Loop

AT 10 After 10 msec from reference,

CB1 Clear Output 1

AT -40 Wait 40 msec from reference and reset reference

SB1 Set Output 1

JP #LOOP Jump to location #LOOP and continue executing commands

EN End of program

Conditional Jumps
The DMC 1300 provides Conditional Jump (JP) and Conditional Jump to Subroutine (JS) instructions for
branching to a new program location. Program execution will continue at the location specified by the
JP and JS command if the jump condition is satisfied. Conditional jumps are useful for testing events in
real-time since they allow the DMC 1300 to make decisions without a host computer. For example, the
DMC 1300 can begin execution at a specified label or line number based on the state of an input line.

DMC1000 Chapter 7 Application Programming 7 •• 112

Using the JP Command:

The JP command will cause the controller to execute commands at the location specified by the label or
line number if the condition of the jump statement is satisfied. If no condition is specified, program
execution will automatically jump to the specified line. If the condition is not satisfied, the controller
continues to execute the next commands in program sequence.

Using the JS Command:

The JS command is significantly different from the JP command. When the condition specified by the
JS command is satisfied, the controller will begin execution at the program location specified by the line
or label number. However, when the controller reaches an end statement, EN, the controller will jump
back to the location of the JS command and resume executing the next commands. This is known as
jumping to a subroutine. For more information, see section

Conditional Statements

The conditional statement is satisfied if it evaluates to any value other than zero. The conditional
statement can be any valid DMC 1300 numeric operand, including variables, array elements, numeric
values, functions, keywords, and arithmetic expressions. If no conditional statement is given, the jump
will always occur.

Examples:
Number V1=6

Numeric Expression V1=V7*6

 @ABS[V1]>10

Array Element V1<Count[2]

Variable V1<V2

Internal Variable _TPX=0

 _TVX>500

I/O V1>@AN[2]

 @IN[1]=0

Examples Using JP and JS
Instruction Interpretation

JP #Loop, COUNT<10 Jump to #Loop if the variable, COUNT, is less than 10

JS #MOVE2,@IN[1]=1 Jump to subroutine #MOVE2 if input 1 is logic level high. After the
subroutine MOVE2 is executed, the program sequencer returns to the main
program location where the subroutine was called.

JP #BLUE,@ABS[V2]>2 Jump to #BLUE if the absolute value of variable, V2, is greater than 2

JP #C,V1*V7<=V8*V2 Jump to #C if the value of V1 times V7 is less than or equal to t he value of
V8*V2

JP#A Jump to #A

DMC1000 Chapter 7 Application Programming 7 •• 113

Example Using JP command:

Move the X motor to absolute position 1000 counts and back to zero ten times. Wait 100 msec between
moves.

Instruction Interpretation

#BEGIN Begin Program

COUNT=10 Init ialize loop counter

#LOOP Begin loop

PA 1000 Position absolute 1000

BGX Begin move

AMX Wait for motion complete

WT 100 Wait 100 msec

PA 0 Position absolute 0

BGX Begin move

AMX Wait for motion complete

WT 100 Wait 100 msec

COUNT=COUNT-1 Decrement loop counter

JP #LOOP,COUNT>0 Test for 10 times through loop

EN End Program

Command Format - JP and JS
FORMAT: DESCRIPTION

JS destination, logical
condition

Jump to subroutine if logical condition is satisfied

JP destination, logical
condition

Jump to location if logical condition is satisfied

The destination is a program line number or label where the program sequencer will jump if the specified
condition is satisfied. Note that the line number of the first line of program memory is 0. The comma
designates "IF". The logical condition tests two operands with logical operators.

Logical Operators:
OPERATOR DESCRIPTION

< less than

> greater than

= equal to

<= less than or equal to

>= greater than or equal to

<> not equal

DMC1000 Chapter 7 Application Programming 7 •• 114

Subroutines
A subroutine is a group of instructions beginning with a label and ending with an end command (EN).
Subroutines are called from the main program with the jump subroutine instruction JS, followed by a
label or line number, and conditional statement. Up to 8 subroutines can be nested. After the
subroutine is executed, the program sequencer returns to the program location where the subroutine
was called unless the subroutine stack is manipulated as described in the following section.

Example - Using a Subroutine

Subroutine to draw a square 500 counts on each side. The square starts at vector position 1000,1000.

Instruction Interpretation

#M Begin main program

CB1 Clear Output Bit 1 (pick up pen)

VMXY Specify vector motion between X and Y axes

VP 1000,1000;VE;BGS Define vector position; move pen

AMS Wait for after motion trippoint

SB1 Set Output Bit 1 (put down pen)

JS #Square;CB1 Jump to square subroutine

EN End main program

#Square Square subroutine

V1=500;JS #L Define length of side, Jump to subroutine #L

V1=-V1;JS #L Switch direction, Jump to subroutine #L

EN End subroutine #Square

#L;PR V1,V1;BGX Subroutine #L, Define relative position movement on X and Y; Begin
motion

AMX;BGY;AMY After motion on X, Begin Y, Wait for motion on Y to complete

EN End subroutine #L

Stack Manipulation
It is possible to manipulate the subroutine stack by using the ZS command. Every time a JS instruction,
interrupt or automatic routine (such as #POSERR or #LIMSWI) is executed, the subroutine stack is
incremented by 1. Normally the stack is restored with an EN instruction. Occasionally it is desirable not
to return back to the program line where the subroutine or interrupt was called. The ZS1 command
clears 1 level of the stack. This allows the program sequencer to continue to the next line. The ZS0
command resets the stack to its initial value. For example, if a limit occurs and the #LIMSWI routine is
executed, it is often desirable to restart the program sequence instead of returning to the location where
the limit occurred. To do this, give a ZS command at the end of the #LIMSWI routine.

Automatic Subroutines for Monitoring Conditions
Often it is desirable to monitor certain conditions continuously without tying up the host or DMC 1300
program sequences. The DMC 1300 can monitor several important conditions in the background.
These conditions include checking for the occurrence of a limit switch, a defined input, position error,
or a command error. Automatic monitoring is enabled by inserting a special, predefined label in the
applications program. The pre-defined labels are:

DMC1000 Chapter 7 Application Programming 7 •• 115

SUBROUTINE DESCRIPTION

#LIMSWI Limit switch on any axis goes low

#ININT Input specified by II goes low

#POSERR Position error exceeds limit specified by ER

#MCTIME Motion Complete timeout occurred. Timeout period set by TW
command

#CMDERR Bad command given

For example, the #POSERR subroutine will automatically be executed when any axis exceeds its position
error limit. The commands in the #POSERR subroutine could decode which axis is in error and take the
appropriate action. In another example, the #ININT label could be used to designate an input interrupt
subroutine. When the specified input occurs, the program will be executed automatically.

NOTE: An application program must be running for automatic monitoring to function.

Example - Limit Switch

This program prints a message upon the occurrence of a limit switch. Note, for the #LIMSWI routine to
function, the DMC 1300 must be executing an applications program from memory. This can be a very
simple program that does nothing but loop on a statement, such as #LOOP;JP #LOOP;EN. Motion
commands, such as JG 5000 can still be sent from the PC even while the "dummy" applications program
is being executed.

Instruction Interpretation

#LOOP Dummy Program

JP #LOOP;EN Jump to Loop

#LIMSWI Limit Switch Label

MG "LIMIT
OCCURRED"

Print Message

RE Return to main program

XQ #LOOP Execute Dummy Program

JG 5000 Jog X axis at rate of 5000 counts / sec

BGX Begin motion on X axis

NOTE: Regarding the #LIMSWI Routine.

 Now, when a forward limit switch occurs on the X axis, the #LIMSWI subroutine will be executed.

1) The RE command is used to return from the #LIMSWI subroutine.

2) The #LIMSWI will continue to be executed until the limit switch is cleared (goes high).

3) The #LIMSWI routine will only be executed when the motor is being commanded to move.

DMC1000 Chapter 7 Application Programming 7 •• 116

Example - Position Error

Instruction Interpretation

#LOOP Dummy Program

JP #LOOP;EN Loop

#POSERR Position Error Routine

V1=_TEX Read Position Error

MG "EXCESS POSITION ERROR" Print Message

MG "ERROR=",V1= Print Error

RE Return from Error

While running the 'dummy' program, if the position error on the X axis exceeds that value specified by
the ER command, the #POSERR routine will execute.

NOTE: The RE command is used to return from the #POSERR subroutine

NOTE: The #POSERR routine will continue to be executed until the position error is cleared (is less
than the ER limit).

Example - Input Interrupt

Instruction Interpretation

#A Label

II1 Input Interrupt on 1

JG 30000,,,60000 Jog

BGXW Begin Motion

#LOOP;JP#LOOP;EN Loop

#ININT Input Interrupt

STXW;AM Stop Motion

#TEST;JP #TEST, @IN[1]=0 Test for Input 1 still low

JG 30000,,,6000 Restore Velocities

BGXW;RI Begin motion and Return to Main Program

EN

NOTE: Use the RI command to return from #ININT subroutine.

Example - Motion Complete Timeout

Instruction Interpretation

#BEGIN Begin main program

TW 1000 Set the time out to 1000 ms

PA 10000 Position Absolute command

BGX Begin motion

MCX Motion Complete trip point

EN End main program

#MCTIME Motion Co mplete Subroutine

DMC1000 Chapter 7 Application Programming 7 •• 117

MG “X fell short” Send out a message

EN End subroutine

This simple program will issue the message “X fell short” if the X axis does not reach the commanded
position within 1 second of the end of the profiled mo ve.

Example - Bad Command

Instruction Interpretation

#BEGIN Begin main program

IN "ENTER SPEED", SPEED Prompt for speed

JG SPEED;BGX; Begin motion

JP #BEGIN Repeat

EN End main program

#CMDERR Command error utility

JP#DONE,_ED<>2 Check if error on line 2

JP#DONE,_TC<>6 Check if out of range

MG "SPEED TOO HIGH" Send message

MG "TRY AGAIN" Send message

ZS1 Adjust stack

JP #BEGIN Return to main program

#DONE End program if other error

ZS0 Zero stack

EN End program

The above program prompts the operator to enter a jog speed. If the operator enters a number out of
range (greater than 8 million), the #CMDERR routine will be executed prompting the operator to enter a
new number.

Mathematical and Functional Expressions

Mathematical Expressions
For manipulation of data, the DMC 1300 provides the use of the following mathematical operators:

DMC1000 Chapter 7 Application Programming 7 •• 118

OPERATOR FUNCTION

+ Addition

- Subtraction

* Multiplication

/ Division

& Logical And (Bit -wise)

| Logical Or (On some computers, a solid vertical line appears as a broken line)

() Parenthesis

The numeric range for addition, subtraction and multiplication operations is +/-2,147,483,647.9999. The
precision for division is 1/65,000.

Mathematical operations are executed from left to right. Calculations within a parentheses have
precedence.

Examples of MATHEMATICAL EXPRESSION
SPEED=7.5*V1/2 The variable, SPEED, is equal to 7.5 multiplied by V1 and divided by

2

COUNT=COUNT+2 The variable, COUNT, is equal to the current value plus 2.

RESULT=_TPX-
(@COS[45]*40)

Puts the position of X - 28.28 in RESULT. 40 * cosine of 45° is 28.28

TEMP=@IN[1]&@IN[2] TEMP is equal to 1 only if Input 1 and Input 2 are high

Bit-Wise Operators
The mathematical operators & and | are bit-wise operators. The operator, &, is a Logical And. The
operator, |, is a Logical Or. These operators allow for bit-wise operations on any valid DMC 1300
numeric operand, including variables, array elements, numeric values, functions, keywords, and
arithmetic expressions. The bit-wise operators may also be used with strings.

Bit-wise operators are useful for separating characters from an input string. When using the input
command for string input, the input variable holds 6 bytes of data. Each byte is eight bits, so a number
represented as 32 bits of integer and 16 bits of fraction. Each ASCII character is represented as one
byte (8 bits), therefore the input variable can hold a six character string. The first character of the string
will be placed in the top byte of the variable and the last character will be placed in the lowest
significant byte of the fraction. The characters can be individually separated by using bit-wise
operations as illustrated in the following example:

Instruction Interpretation

#TEST Begin main program

IN "ENTER",LEN{S6} Input character string up to 6 characters into variable
‘LEN’

FLEN=@FRAC[LEN] Define variable ‘FLEN’ as fractional part of variable
‘LEN’

FLEN=$10000*FLEN Shift FLEN by 32 bits (Convert fraction, FLEN, to
integer)

DMC1000 Chapter 7 Application Programming 7 •• 119

LEN1=(FLEN&$00FF)*$1000000 Set 4th byte of FLEN = 1st byte of variable LEN1

LEN2=(FLEN&$FF00)*$10000 Set 3rd byte of FLEN = 1st byte of variable of LEN2

LEN3=(LEN&$000000FF)*$1000000 Set 1st byte of variable LEN3 = 4th byte of LEN

LEN4=(LEN&$0000FF00)*$10000 Set 1st byte of variable LEN4 = 3rd byte of LEN

LEN5=(LEN&$00FF0000)*$100 Set 1st byte of variable LEN5 = 2nd byte of LEN

LEN6=(LEN&$FF000000) Set 1st byte of variable LEN6 = 1st byte of LEN

MG LEN6 {S1} Display ‘LEN6’ as string message of 1 char

MG LEN5 {S1} Display ‘LEN5’ as string message of 1 char

MG LEN4 {S1} Display ‘LEN4’ as string message of 1 char

MG LEN3 {S1} Display ‘LEN3’ as string message of 1 char

MG LEN2 {S1} Display ‘LEN2’ as string message of 1 char

MG LEN1 {S1} Display ‘LEN1’ as string message of 1 char

EN

This program will accept a string input of up to 6 characters, parse each character, and then display
each character. Notice also that the values used for masking are represented in hexadecimal (as
denoted by the preceding ‘$’). For more information, see section Sending Messages.

To illustrate further, if the user types in the string “TESTME” at the input prompt, the controller will
respond with the following:

T Response from command MG LEN6 {S1}

E Response from command MG LEN5 {S1}

S Response from command MG LEN4 {S1}

T Response from command MG LEN3 {S1}

M Response from command MG LEN2 {S1}

E Response from command MG LEN1 {S1}

 Functions
FUNCTION DESCRIPTION

@SIN[n] Sine of n (n in degrees, resolution of 1/64,000 degrees, max +/- 4 billion)

@COS[n] Cosine of n (n in degrees, resolution of 1/64,000 degrees, max +/- 4
billion)

@COM[n] 1’s Compliment of n

@ABS[n] Absolute value of n

@FRAC[n] Fraction portion of n

@INT[n] Integer portion of n

@RND[n] Round of n (Rounds up if the fractional part of n is .5 or greater)

@SQR[n] Square root of n (Accuracy is +/-.004)

@IN[n] Return status of digital input n

@OUT[n] Return status of digital output n

DMC1000 Chapter 7 Application Programming 7 •• 120

@AN[n] Return voltage measured at analog input n

Functions may be combined with mathematical expressions. The order of execution of mathematical
expressions is from left to right and can be over-ridden by using parentheses.

Examples - Using Functions
V1=@ABS[V7] The variable, V1, is equal to the absolute value of variable V7.

V2=5*@SIN[POS] The variable, V2, is equal to five times the sine of the variable, POS.

V3=@IN[1] The variable, V3, is equal to the digital value of input 1.

V4=2*(5+@AN[5]) The variable, V4, is equal to the value of analog input 5 plus 5, then
multiplied by 2.

Variables
The maximum number of variables available with a DMC 1300 controller depends on the controller
configuration: 126 variables are available for 1-4 axes controllers, 510 variables with 1-4 axes and the -
MX option, and 254 variables with controllers of 5 or mor axes. These variables can be numbers or
strings. Variables are useful in applications where specific parameters, such as position or speed, must
be able to change. Variables can be assigned by an operator or determined by program calculations.
For example, a cut-to-length application may require that a cut length be variable.

Each variable is defined by a name which can be up to eight characters. The name must start with an
alphabetic character, however, numbers are permitted in the rest of the name. Spaces are not permitted.
Variable names should not be the same as DMC 1300 instructions. For example, PR is not a good choice
for a variable name.

In addition to the local variables, the DMC 1300 has 64 variables that are stored as arrays and ‘shared’
with the Dual Port RAM. These variables can be addressed directly by the VME host. The variables
are stored in the Variable Buffer at 240 - 3BF for the DMC 1310/1340 and at 440 - 5BF. Variables are
assigned by VR[n] = value where n is a number in the range 0 to 63 and the value is 4 bytes of integer
followed by two bytes of fraction.

Examples - Valid Variable Names
POSX

POS1

SPEEDZ

Examples - Invalid Variable Names
Variable Problem

REALLONGNAME Cannot have more than 8 characters

124 Cannot begin variable name with a number

SPEED Z Cannot have spaces in the name

Assigning Values to Variables:
Assigned values can be numbers, internal variables and keywords, functions, controller parameters and
strings;

DMC1000 Chapter 7 Application Programming 7 •• 121

Variables hold 6 bytes of data, 4 bytes of integer (2
31

)followed by two bytes of fraction providing a
range of values of +/-2,147,483,647.9999.

Numeric values can be assigned to programmable variables using the equal sign.

Any valid DMC 1300 function can be used to assign a value to a variable. For example, V1=@ABS[V2]
or V2=@IN[1]. Arithmetic operations are also permitted.

To assign a string value, the string must be in quotations. String variables can contain up to six
characters which must be in quotations.

Variable values may be assigned to controller parameters such as PR or SP.

When using the shared Dual Port RAM variables, values are assigned using the VR[n]= value
command.

Examples - Assigning values to variables
Instruction Interpretation

POSX=_TPX Assigns returned value from TPX command to variable POSX.

SPEED=5.75 Assigns value 5.75 to variable SPEED

INPUT=@IN[2] Assigns logical value of input 2 to variable INPUT

V2=V1+V3*V4 Assigns the value of V1 plus V3 times V4 to the variable V2.

VAR="CAT" Assign the string, CAT, to VAR

PR V1 Assign value of variable V1 to PR command for X axis

SP VS*2000 Assign VS*2000 to SP command

Examples - Dual Port RAM assigned variables
Instruction Interpretation

VR[22]=200 Assigns the decimal value 200 to variable element number 22. On a DMC
1340, this element is found at address $2CF, with the data 00 00 00 C8 00
00.

Displaying the value of variables at the terminal

Variables may be sent to the screen using the format, variable=. For example, V1= , returns the value of
the variable V1.

Example - Using Variables for Joystick

The example below reads the voltage of an X-Y joystick and assigns it to variables VX and VY to drive
the motors at proportional velocities, where

 10 Volts = 3000 rpm = 200000 c/sec

 Speed/Analog input = 200000/10 = 20000

Instruction Interpretation

DMC1000 Chapter 7 Application Programming 7 •• 122

#JOYSTIK Label

JG 0,0 Set in Jog mode

BGXY Begin Motion

#LOOP Loop

VX=@AN[1]*20000 Read joystick X

VY=@AN[2]*20000 Read joystick Y

JG VX,VY Jog at variable VX,VY

JP#LOOP Repeat

EN End

Operands
Operands allow motion or status parameters of the DMC 1300 to be incorporated into programmable
variables and expressions. An operand contains data and must be used in a valid expression or
function. Most DMC 1300 commands have an equivalent operand - which are designated by adding an
underscore (_) prior to the DMC 1300 command. Commands which have an associated operand are
listed in the Command Reference as "Used as an Operand" .. Yes.

Status commands such as Tell Position return actual values, whereas action commands such as GN or
SP return the values in the DMC 1300 registers. The axis designation is required following the
command.

Examples of operand usage
POSX=_TPX Assigns value from Tell Position X to the variable POSX.

GAIN=_GNZ*2 Assigns value from GNZ multiplied by two to variable, GAIN.

JP #LOOP,_TEX>5 Jump to #LOOP if the position error of X is greater than 5

JP #ERROR,_TC=1 Jump to #ERROR if the error code equals 1.

Operands can be used in an expression and assigned to a programmable variable, but they cannot be
assigned a value. For example: _GNX=2 is invalid.

The value of an operand can be output to the computer with the message command, MG. IE. MG _TEX
sends the current position error value on axis X to the computer.

DMC1000 Chapter 7 Application Programming 7 •• 123

Special Operands (Keywords)
The DMC 1300 provides a few operands which give access to internal variables that are not accessible
by standard DMC 1300 commands.

KEYWORD FUNCTION

_BGn *Is equal to a 1 if motion on axis ‘n’ is complete, otherwise equal to 0.

_DA *Is equal to the number of arrays available

_DL *Is equal to the number of available labels for programming

_DM *Is equal to the available array memory

_HMn *Is equal to status of Home Switch (equals 0 or 1)

_LFn Is equal to status of Forward Limit switch input of axis ‘n’ (equals 0 or 1)

_LRX Is equal to status of Reverse Limit switch input of axis ‘n’ (equals 0 or 1)

_UL *Is equal to the number of available variables

TIME Free-Running Real Time Clock (off by 2.4% - Resets with power-on).

Note: TIME does not use an underscore character (_) as other keywords.

* - These keywords have corresponding commands while the keywords _LF, _LR, and TIME do not
have any associated commands. All keywords are listed in the Command Summary, Chapter 11.

Examples of Keywords
Instruction Interpretation

V1=_LFX Assign V1 the logical state of the Forward Limit Switch on the X-axis

V3=TIME Assign V3 the current value of the time clock

 V4=_HMW Assign V4 the logical state of the Home input on the W -axis

Arrays
For storing and collecting numerical data, the DMC 1300 provides array space for 1600 elements or 8000
elements for controllers with 5 or more axes, or with controller with the -MX option. The arrays are one
dimensional and up to 14 different arrays may be defined (30 for controllers with 5 or more axes, or the
-MX option). Each array element has a numeric range of 4 bytes of integer (2

31
)followed by two bytes

of fraction (+/-2,147,483,647.9999).

Arrays can be used to capture real-time data, such as position, torque and analog input values. In the
contouring mode, arrays are convenient for holding the points of a position trajectory in a record and
playback application.

Defining Arrays
An array is defined with the command DM. The user must specify a name and the number of entries to
be held in the array. An array name can contain up to eight characters, starting with an uppercase
alphabetic character. The number of entries in the defined array is enclosed in [].

DMC1000 Chapter 7 Application Programming 7 •• 124

Example - USING THE COMMAND, DM
Instruction Interpretation

DM POSX[7] Defines an array names POSX with seven entries

DM SPEED[100] Defines an array named speed with 100 entries

DM POSX[0] Frees array space

Assignment of Array Entries
Like variables, each array element can be assigned a value. Assigned values can be numbers or
returned values from instructions, functions and keywords.

Array elements are addressed starting at count 0. For example the first element in the POSX array
(defined with the DM command, DM POSX[7]) would be specified as POSX[0].

Values are assigned to array entries using the equal sign. Assignments are made one element at a time
by specifying the element number with the associated array name.

NOTE: Arrays must be defined using the command, DM, before assigning entry values.

Examples - assigning values to array entries
Instruction Interpretation

DM SPEED[10] Dimension Speed Array

SPEED[1]=7650.2 Assigns the first element of the array, SPEED the value 7650.2

SPEED[1]= Returns array element value

POSX[10]=_TPX Assigns the 10th element of the array POSX the returned value from the
tell position command.

CON[2]=@COS[POS]*2 Assigns the second element of the array CON the cosine of the variable
POS multiplied by 2.

TIMER[1]=TIME Assigns the first element of the array timer the returned value of the TIME
keyword.

DMC1000 Chapter 7 Application Programming 7 •• 125

Using a Variable to Address Array Elements

An array element number can also be a variable. This allows array entries to be assigned sequentially
using a counter. For example;

Instruction Interpretation

#A Begin Program

COUNT=0;DM POS[10] Initialize counter and define array

#LOOP Begin loop

WT 10 Wait 10 msec

POS[COUNT]=_TPX Record position into array element

POS[COUNT]= Report position

COUNT=COUNT+1 Increment counter

JP #LOOP,COUNT<10 Loop until 10 elements have been stored

EN End Program

The above example records 10 position values at a rate of one value per 10 msec. The values are stored
in an array named POS. The variable, COUNT, is used to increment the array element counter. The
above example can also be executed with the automatic data capture feature described below.

Automatic Data Capture into Arrays
The DMC 1300 provides a special feature for automatic capture of data such as position, position error,
inputs or torque. This is useful for teaching motion trajectories or observing system performance. Up
to four types of data can be captured and stored in four arrays. For controllers with 5 or more axes, up
to eight types of data can be captured and stored in eight arrays. The capture rate or time interval may
be specified. Recording can done as a one time event or as a circular continuous recording.

DMC1000 Chapter 7 Application Programming 7 •• 126

 Command Summary - Automatic Data Capture
COMMAND DESCRIPTION

RA n[],m[],o[],p[] Selects up to four arrays (eight arrays for DMC-1080) for data capture.
The arrays must be defined with the DM c ommand.

RD
type1,type2,type3,type4

Selects the type of data to be recorded, where type1, type2, type3, and
type 4 represent the various types of data (see table below). The order of
data type is important and corresponds with the order of n,m,o,p arrays
in the RA command.

RC n,m The RC command begins data collection. Sets data capture time interval
where n is an integer between 1 and 8 and designates 2n msec between
data. m is optional and specifies the number of elements to be captured.
If m is not defined, the number of elements defaults to the smallest array
defined by DM. When m is a negative number, the recording is done
continuously in a circular manner. _RD is the recording pointer and
indicates the address of the next array element. n=0 stops recording.

RC? Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in
progress

Data Types for Recording:
DATA TYPE DESCRIPTION

_DEX 2nd encoder position (dual encoder)

_TPX Encoder position

_TEX Position error

_SHX Commanded position

_RLX Latched position

_TI Inputs

_OP Output

_TSX Switches (only bit 0-4 valid)

_SCX Stop code

_NOX Status bits

_TTX Torque (reports digital value +/-8097)

Note: X may be replaced by Y,Z or W for capturing data on other axes, or A,B,C,D,E,F,G,H for DMC
1380.

Operand Summary - Automatic Data Capture
_RC Returns a 0 or 1 where, 0 denotes not recording, 1 specifies recording in

progress

_RD Returns address of next array element.

Example - Recording into An Array

During a position move, store the X and Y positions and position error every 2 msec.

Instruction Interpretation

DMC1000 Chapter 7 Application Programming 7 •• 127

#RECORD Begin program

DM XPOS[300],YPOS[300] Define X,Y position arrays

DM XERR[300],YERR[300] Define X,Y error arrays

RA XPOS[],XERR[],YPOS[],YERR[] Select arrays for capture

RD _TPX,_TEX,_TPY,_TEY Select data types

PR 10000,20000 Specify move distance

RC1 Start recording now, at rate of 2 msec

BG XY Begin motion

#A;JP #A,RC=1 Loop until done

MG "DONE" Print message

EN End program

#PLAY Play back

N=0 Initial Counter

JP# DONE,N>300 Exit if done

N= Print Counter

X POS[N]= Print X position

Y POS[N]= Print Y position

XERR[N]= Print X error

YERR[N]= Print Y error

N=N+1 Increment Counter

#DONE Done

Deallocating Array Space
Array space may be deallocated using the DA command followed by the array name. DA*[0]
deallocates all the arrays.

Output of Data (Numeric and String)
Numerical and string data can be output from the controller using several methods. The message
command, MG, can output string and numerical data. Also, the controller can be commanded to return
the values of variables and arrays, as well as other information using the interrogation commands (the
interrogation commands are described in chapter 5).

Sending Messages
Messages may be sent to the bus using the message command, MG. This command sends specified
text and numerical or string data from variables or arrays to the screen.

Text strings are specified in quotes and variable or array data is designated by the name of the variable
or array. For example:

MG "The Final Value is", RESULT

DMC1000 Chapter 7 Application Programming 7 •• 128

In addition to variables, functions and commands, responses can be used in the message command.
For example:

 MG "Analog input is", @AN[1]

 MG "The Gain of X is", _GNX

The response from the message command when sent through the Command Buffer is found in the
Response Buffer. The response from the message command when sent through an application program
is found in the Program Buffer. See the MG command in Chapter 12 for more details.

Programmable Hardware I/O

Digital Outputs
The DMC 1300 has an 8-bit uncommitted output port for controlling external events. The DMC-1080
has an additional eight output bits available at JD5 pins 10-17. Each bit on the output port may be set
and cleared with the software instructions SB (Set Bit) and CB(Clear Bit), or OB (define output bit).

The outputs may also be set and read through the Dual Port RAM.

Example - Using Set Bit and Clear Bit Commands (SB, CB)
Instruction Interpretation

SB6 Sets bit 6 of output port

CB4 Clears bit 4 of output port

CB9 Clear bit 9 of output port on DMC-1380

The Output Bit (OB) instruction is useful for setting or clearing outputs depending on the value of a
variable, array, input or expression. Any non-zero value results in a set bit.

Example - Using the output bit Command (OB)
Instruction Interpretation

OB1, POS Set Output 1 if the variable POS is non-zero. Clear Output 1 if POS equals
0.

OB 2, @IN [1] Set Output 2 if Input 1 is high. If Input 1 is low, clear Output 2.

OB 3, @IN [1]&@IN [2] Set Output 3 only if Input 1 and Input 2 are high.

OB 4, COUNT [1] Set Output 4 if element 1 in the array COUNT is non-zero.

The output port can be set by specifying an 8-bit word using the instruction OP (Output Port). This
instruction allows a single command to define the state of the entire 8-bit output port, where 20 is
output 1, 21 is output 2 and so on. A 1 designates that the output is on.

Example - Using the output PORT Command (op)
Instruction Interpretation

OP6 Sets outputs 2 and 3 of output port to high. All other bits are 0. (21 + 22 =
6)

OP0 Clears all bits of output port to zero

DMC1000 Chapter 7 Application Programming 7 •• 129

OP 255 Sets all bits of output port to one.

(22 + 21 + 22 + 23 + 24 + 25 + 26 + 27)

Example - Using OP to turn on output after move
Instruction Interpretation

#OUTPUT Label

PR 2000 Position Command

BG Begin

AM After move

SB1 Set Output 1

WT 1000 Wait 1000 msec

CB1 Clear Output 1

EN End

Digital Inputs
The DMC 1300 has eight digital inputs for controlling motion by local switches. The @IN[n] function
returns the logic level of the specified input 1 through 8. For example, a Jump on Condition instruction
can be used to execute a sequence if a high condition is noted on an input 3. To halt program
execution, the After Input (AI) instruction waits until the specified input has occurred.

Digital inputs on the DMC 1300 may also be read through the Dual Port RAM.

Example - Using the AI command:
Instruction Interpretation

JP #A,@IN[1]=0 Jump to A if input 1 is low

JP #B,@IN[2]=1 Jump to B if input 2 is high

AI 7 Wait until input 7 is high

AI -6 Wait until input 6 is low

Example - Start Motion on Switch

Motor X must turn at 4000 counts/sec when the user flips a panel switch to on. When panel switch is
turned to off position, motor X must stop turning.

Solution: Connect panel switch to input 1 of DMC 1300. High on input 1 means switch is in on
position.

Instruction Interpretation

#S;JG 4000 Set speed

AI 1;BGX Begin after input 1 goes high

AI -1;STX Stop after input 1 goes low

AMX;JP #S After motion, repeat

EN;

DMC1000 Chapter 7 Application Programming 7 •• 130

Input Interrupt Function
The DMC 1300 provides an input interrupt function which causes the program to automatically execute
the instructions following the #ININT label. This function is enabled using the II m,n,o command. The
m specifies the beginning input and n specifies the final input in the range. The parameter o is an
interrupt mask. If m and n are unused, o contains a number with the mask. A 1 designates that input to
be enabled for an interrupt, where 20 is bit 1, 21 is bit 2 and so on. For example, II,,5 enables inputs 1
and 3 (20 + 22 = 5).

A low input on any of the specified inputs will cause automatic execution of the #ININT subroutine.
The Return from Interrupt (RI) command is used to return from this subroutine to the place in the
program where the interrupt had occurred. If it is desired to return to somewhere else in the program
after the execution of the #ININT subroutine, the Zero Stack (ZS) command is used followed by
unconditional jump statements.

 IMPORTANT: Use the RI instruction (not EN) to return from the #ININT subroutine.

Examples - Input Interrupt
Instruction Interpretation

#A Label #A

II 1 Enable input 1 for interrupt function

JG 30000,-20000 Set speeds on X and Y axes

BG XY Begin motion on X and Y axes

#B Label #B

TP XY Report X and Y axes positions

WT 1000 Wait 1000 milliseconds

JP #B Jump to #B

EN End of program

#ININT Interrupt subroutine

MG "Interrupt occurred" Display message

ST XY Stops motion on X and Y axes

#LOOP;JP
#LOOP,@IN[1]=0

Loop until Interrupt cleared

JG 15000,10000 Specify new speeds

WT 300 Wait 300 milliseconds

BG XY Begin motion on X and Y axes

RI Return from Interrupt subroutine

Analog Inputs
The DMC 1300 provides seven analog inputs. The value of these inputs in volts may be read using the
@AN[n] function where n is the analog input 1 through 7. The resolution of the Analog-to-Digital
conversion is 12 bits. Analog inputs are useful for reading special sensors such as temperature,
tension or pressure.

The following examples show programs which cause the motor to follow an analog signal. The first
example is a point-to-point move. The second example shows a continuous move.

DMC1000 Chapter 7 Application Programming 7 •• 131

Example - Position Follower (Point-to-Point)

Objective - The motor must follow an analog signal. When the analog signal varies by 10V, motor must
move 10000 counts.

Method: Read the analog input and command X to move to that point.

Instruction Interpretation

#Points Label

SP 7000 Speed

AC 80000;DC 80000 Acceleration

#Loop

VP=@AN[1]*1000 Read and analog input, compute position

PA VP Command position

BGX Start motion

AMX After completion

JP #Loop Repeat

EN End

Example - Position Follower (Continuous Move)

Method: Read the analog input, compute the commanded position and the position error. Command
the motor to run at a speed in proportions to the position error.

Instruction Interpretation

#Cont Label

AC 80000;DC 80000 Acceleration rate

JG 0 Start job mode

BGX Start motion

#Loop

VP=@AN[1]*1000 Compute desired position

VE=VP-_TPX Find position error

VEL=VE*20 Compute velocity

JG VEL Change velocity

JP #Loop Change velocity

EN End

Example Applications

Wire Cutter
An operator activates a start switch. This causes a motor to advance the wire a distance of 10". When
the motion stops, the controller generates an output signal which activates the cutter. Allowing 100 ms
for the cutting completes the cycle.

DMC1000 Chapter 7 Application Programming 7 •• 132

Suppose that the motor drives the wire by a roller with a 2" diameter. Also assume that the encoder
resolution is 1000 lines per revolution. Since the circumference of the roller equals 2π inches, and it
corresponds to 4000 quadrature, one inch of travel equals:

 4000/2π = 637 count/inch

This implies that a distance of 10 inches equals 6370 counts, and a slew speed of 5 inches per second,
for example, equals 3185 count/sec.

The input signal may be applied to I1, for example, and the output signal is chosen as output 1. The
motor velocity profile and the related input and output signals are shown in Fig. 7.1.

The program starts at a state that we define as #A. Here the controller waits for the input pulse on I1.
As soon as the pulse is given, the controller starts the forward motion.

Upon completion of the forward move, the controller outputs a pulse for 20 ms and then waits an
additional 80 ms before returning to #A for a new cycle.

Instruction Function

#A Label

AI1 Wait for input 1

PR 6370 Distance

SP 3185 Speed

BGX Start Motion

AMX After motion is complete

SB1 Set output bit 1

WT 20 Wait 20 ms

CB1 Clear output bit 1

WT 80 Wait 80 ms

JP #A Repeat the process

START PULSE I1

MOTOR VELOCITY

OUTPUT PULSE

TIME INTERVALS

move

output

wait ready move

DMC1000 Chapter 7 Application Programming 7 •• 133

Figure 7.1 - Motor Velocity and the Associated input/output signals

X-Y Table Controller
An X-Y-Z system must cut the pattern shown in Fig. 7.2. The X-Y table moves the plate while the Z-
axis raises and lowers the cutting tool.

The solid curves in Fig. 7.2 indicate sections where cutting takes place. Those must be performed at a
feedrate of 1 inch per second. The dashed line corresponds to non-cutting moves and should be
performed at 5 inch per second. The acceleration rate is 0.1 g.

The motion starts at point A, with the Z-axis raised. An X-Y motion to point B is followed by lowering
the Z-axis and performing a cut along the circle. Once the circular motion is completed, the Z-axis is
raised and the motion continues to point C, etc.

Assume that all of the 3 axes are driven by lead screws with 10 turns-per-inch pitch. Also assume
encoder resolution of 1000 lines per revolution. This results in the relationship:

 1 inch = 40,000 counts

and the speeds of

 1 in/sec = 40,000 count/sec

 5 in/sec = 200,000 count/sec

an acceleration rate of 0.1g equals

 0.1g = 38.6 in/s2 = 1,544,000 count/s2

Note that the circular path has a radius of 2" or 80000 counts, and the motion starts at the angle of 270°
and traverses 360° in the CW (negative direction). Such a path is specified with the instruction

 CR 80000,270,-360

Further assume that the Z must move 2" at a linear speed of 2" per second. The required motion is
performed by the following instructions:

Instruction Interpretation

#A Label

VM XY Circular interpolation for XY

VP 160000,160000 Positions

VE End Vector Motion

VS 200000 Vector Speed

VA 1544000 Vector Acceleration

BGS Start Motion

AMS When motion is complete

PR,,-80000 Move Z down

SP,,80000 Z speed

BGZ Start Z motion

AMZ Wait for completion of Z motion

CR 80000,270,-360 Circle

VE

VS 40000 Feedrate

DMC1000 Chapter 7 Application Programming 7 •• 134

BGS Start circular move

AMS Wait for completion

PR,,80000 Move Z up

BGZ Start Z move

AMZ Wait for Z completion

PR -21600 Move X

SP 20000 Speed X

BGX Start X

AMX Wait for X completion

PR,,-80000 Lower Z

BGZ

AMZ

CR 80000,270,-360 Z second circle move

VE

VS 40000

BGS

AMS

PR,,80000 Raise Z

BGZ

AMZ

VP -37600,-16000 Return XY to start

VE

VS 200000

BGS

AMS

EN

DMC1000 Chapter 7 Application Programming 7 •• 135

R=2

B C

A

0 4 9.3

4

Y

X

Figure 7.2 - Motor Velocity and the Associated input/output signals

Speed Control by Joystick
The speed of a motor is controlled by a joystick. The joystick produces a signal in the range between -
10V and +10V. The objective is to drive the motor at a speed proportional to the input voltage.

Assume that a full voltage of 10 Volts must produce a motor speed of 3000 rpm with an encoder
resolution of 1000 lines or 4000 count/rev. This speed equals:

 3000 rpm = 50 rev/sec = 200000 count/sec

The program reads the input voltage periodically and assigns its value to the variable VIN. To get a
speed of 200,000 ct/sec for 10 volts, we select the speed as

 Speed = 20000 x VIN

The corresponding velocity for the motor is assigned to the VEL variable.

Instruction Interpretation

#A Label

JG0 Set jog speed of zero

BGX Begin jogging (at speed zero)

#B Label

VIN=@AN[1] Set variable, VIN, to value of analog input 1

DMC1000 Chapter 7 Application Programming 7 •• 136

VEL=VIN*20000 Set variable, VEL to multiple of variable of VIN

JG VEL Update jog speed to value of variable VEL

JP #B Loop back to label, #B

EN End

Position Control by Joystick
This system requires the position of the motor to be proportional to the joystick angle. Furthermore,
the ratio between the two positions must be programmable. For example, if the control ratio is 5:1, it
implies that when the joystick voltage is 5 Volts, corresponding to 1028 counts, the required motor
position must be 5120 counts. The variable V3 changes the position ratio.

Instruction Interpretation

#A Label

V3=5 Initial position ratio

DP0 Define the starting position

JG0 Set motor in jog mode as zero

BGX Start

#B

V1=@AN[1] Read analog input

V2=V1*V3 Compute the desired position

V4=V2-_TPX-_TEX Find the following error

V5=V4*20 Compute a proportional speed

JG V5 Change the speed

JP #B Repeat the process

EN End

Backlash Compensation by Sampled Dual-Loop
The continuous dual loop, enabled by the DV1 function is an effective way to compensate for backlash.
In some cases, however, when the backlash magnitude is large, it may be difficult to stabilize the
system. In those cases, it may be easier to use the sampled dual loop method described below.

This design example addresses the basic problems of backlash in motion control systems. The
objective is to control the position of a linear slide precisely. The slide is to be controlled by a rotary
motor, which is coupled to the slide by a leadscrew. Such a leadscrew has a backlash of 4 micron, and
the required position accuracy is for 0.5 micron.

The basic dilemma is where to mount the sensor. If you use a rotary sensor, you get a 4 micron
backlash error. On the other hand, if you use a linear encoder, the backlash in the feedback loop will
cause oscillations due to instability.

An alternative approach is the dual-loop, where we use two sensors, rotary and linear. The rotary
sensor assures stability (because the position loop is closed before the backlash) whereas the linear
sensor provides accurate load position information. The operation principle is to drive the motor to a
given rotary position near the final point. Once there, the load position is read to find the position error
and the controller commands the motor to move to a new rotary position which eliminates the position
error.

DMC1000 Chapter 7 Application Programming 7 •• 137

Since the required accuracy is 0.5 micron, the resolution of the linear sensor should preferably be twice
finer. A linear sensor with a resolution of 0.25 micron allows a position error of +/-2 counts.

The dual-loop approach requires the resolution of the rotary sensor to be equal or better than that of
the linear system. Assuming that the pitch of the lead screw is 2.5mm (approximately 10 turns per inch),
a rotary encoder of 2500 lines per turn or 10,000 count per revolution results in a rotary resolution of
0.25 micron. This results in equal resolution on both linear and rotary sensors.

To illustrate the control method, assume that the rotary encoder is used as a feedback for the X-axis,
and that the linear sensor is read and stored in the variable LINPOS. Further assume that at the start,
both the position of X and the value of LINPOS are equal to zero. Now assume that the objective is to
move the linear load to the position of 1000.

The first step is to command the X motor to move to the rotary position of 1000. Once it arrives we
check the position of the load. If, for example, the load position is 980 counts, it implies that a
correction of 20 counts must be made. However, when the X-axis is commanded to be at the position of
1000, suppose that the actual position is only 995, implying that X has a position error of 5 counts,
which will be eliminated once the motor settles. This implies that the correction needs to be only 15
counts, since 5 counts out of the 20 would be corrected by the X-axis. Accordingly, the motion
correction should be:

 Correction = Load Position Error - Rotary Position Error

The correction can be performed a few times until the error drops below +/-2 counts. Often, this is
performed in one correction cycle.

Example - backlash compensation by sampled dual loop
Instruction Interpretation

#A Label

DP0 Define starting positions as zero

LINPOS=0

PR 1000 Required distance

BGX Start motion

#B

AMX Wait for completion

WT 50 Wait 50 msec

LIN POS = _DEX Read linear position

ER=1000-LINPOS-_TEX Find the correction

JP #C,@ABS[ER]<2 Exit if error is small

PR ER Command correction

BGX Begin motion on X axis

JP #B Repeat the process

#C Label

EN End program

DMC1000 Chapter 7 Application Programming 7 •• 138

THIS PAGE LEFT BLANK INTENTIONALLY

DMC 1300 Chapter 8 Hardware & Software Protection •• 8 - 139

Chapter 8 Hardware & Software
Protection

Introduction
The DMC 1300 provides several hardware and software features to check for error conditions and to
inhibit the motor on error. These features help protect the various system components from damage.

WARNING: Machinery in motion can be dangerous! It is the responsibility of the user to design
effective error handling and safety protection as part of the machine. Since the DMC 1300 is an integral
part of the machine, the engineer should design his overall system with protection against a possible
component failure on the DMC 1300. Galil shall not be liable or responsible for any incidental or
consequential damages.

Hardware Protection
The DMC 1300 includes hardware input and output protection lines for various error and mechanical
limit conditions. These include:

Output Protection Lines
Amp Enable - This signal goes low when the motor off command is given, when the position error
exceeds the value specified by the Error Limit (ER) command, or when off-on-error condition is enabled
(OE1) and the abort command is given. Each axis amplifier has separate amplifier enable lines. This
signal also goes low when the watch-dog timer is activated, or upon reset. Note: The standard
configuration of the AEN signal is TTL active low. Both the polarity and the amplitude can be
changed if you are using the ICM-1100 interface board. To make these changes, see section entitled
‘Amplifier Interface’ pg. 3-25.

Input Protection Lines
Abort - A low input stops commanded motion instantly without a controlled deceleration. For any axis
in which the Off-On-Error function is enabled, the amplifiers will be disabled. This could cause the
motor to ‘coast’ to a stop. If the Off-On-Error function is not enabled, the motor will instantaneously
stop and servo at the current position. The Off-On-Error function is further discussed in this chapter.

DMC 1300 Chapter 8 Hardware & Software Protection •• 8 - 140

Forward Limit Switch - Low input inhibits motion in forward direction. If the motor is moving in the
forward direction when the limit switch is activated, the motion will decelerate and stop. In addition, if
the motor is moving in the forward direction, the controller will automatically jump to the limit switch
subroutine, #LIMSWI (if such a routine has been written by the user). The CN command can be used
to change the polarity of the limit switches.

Reverse Limit Switch - Low input inhibits motion in reverse direction. If the motor is moving in the
reverse direction when the limit switch is activated, the motion will decelerate and stop. In addition, if
the motor is moving in the reverse direction, the controller will automatically jump to the limit switch
subroutine, #LIMSWI (if such a routine has been written by the user). The CN command can be used
to change the polarity of the limit switches.

Software Protection
The DMC 1300 provides a programmable error limit for servo operation. The error limit can be set for
any number between 1 and 32767 using the ER n command. The default value for ER is 16384.

Example:

ER 200,300,400,500 Set X-axis error limit for 200, Y-axis error limit to 300, Z-axis error limit to 400
counts, W -axis error limit to 500 counts

ER,1,,10 Set Y-axis error limit to 1 count, set W -axis error limit to 10 counts.

The units of the error limit are quadrature counts. The error is the difference between the command
position and actual encoder position. If the absolute value of the error exceeds the value specified by
ER, the DMC 1300 will generate several signals to warn the host system of the error condition. These
signals include:

Signal or Function Indication of Error

POSERR Jumps to automatic excess position error subroutine

Error Light Turns on when position e rror exceeds error limit

OE Function Shuts motor off by setting AEN output line low if OE1.

The position error of X,Y,Z and W can be monitored during execution using the TE command.

Programmable Position Limits
The DMC 1300 provides programmable forward and reverse position limits. These are set by the BL
and FL software commands. Once a position limit is specified, the DMC 1300 will not accept position
commands beyond the limit. Motion beyond the limit is also prevented.

Example - Using position limits
Instruction Interpretation

DP0,0,0 Define Position

BL -2000,-4000,-8000 Set Reverse position limit

FL 2000,4000,8000 Set Forward position limit

JG 2000,2000,2000 Jog

BG XYZ Begin

(motion stops at forward limits)

DMC 1300 Chapter 8 Hardware & Software Protection •• 8 - 141

Off-On-Error
The DMC 1300 controller has a built in function which can turn off the motors under certain error
conditions. This function is know as ‘Off-On-Error”. To activate the OE function for each axis, specify
1 for X,Y,Z and W axis. To disable this function, specify 0 for the axes. When this function is enabled,
the specified motor will be disabled under the following 3 conditions:

1. The position error for the specified axis exceeds the limit set with the command,
ER

2. The abort command is given

3. The abort input is activated with a low signal.

The status of the OE command is read through the Dual Port RAM at Bit 1 of Status #2 in the Axis
Buffers of the DMC 1300.

Note: If the motors are disabled while they are moving, they may ‘coast’ to a stop because they are no
longer under servo control.

To re-enable the system, use the Reset (RS) or Servo Here (SH) command.

Examples - Using Off-On-Error
OE 1,1,1,1 Enable off-on-error for X,Y,Z and W

OE 0,1,0,1 Enable off-on-error for Y and W axes and disable off-on-error for W and Z
axes

Automatic Error Routine
The #POSERR label causes the statements following to be automatically executed if error on any axis
exceeds the error limit specified by ER. The error routine must be closed with the RE command. The RE
command returns from the error subroutine to the main program.

NOTE: The Error Subroutine will be entered again unless the error condition is gone.

Example - using automatic error subroutine
Instruction Interpretation

#A;JP #A;EN "Dummy" program

#POSERR Start error routine on error

MG "error" Send message

SB 1 Fire relay

STX Stop motor

AMX After motor stops

SHX Servo motor here to clear error

RE Return to main program

NOTE: An applications program must be executing for the #POSERR routine to function.

Limit Switch Routine
The DMC 1300 provides forward and reverse limit switches which inhibit motion in the respective
direction. There is also a special label for automatic execution of a limit switch subroutine. The

DMC 1300 Chapter 8 Hardware & Software Protection •• 8 - 142

#LIMSWI label specifies the start of the limit switch subroutine. This label causes the statements
following to be automatically executed if any limit switch is activated and that axis motor is moving in
that direction. The RE command ends the subroutine.

The state of the forward and reverse limit switches may also be tested during the jump -on-condition
statement. The _LR condition specifies the reverse limit and _LF specifies the forward limit. X,Y,Z, or
W following LR or LF specifies the axis. The CN command can be used to configure the polarity of the
limit switches.

Example - using Limit Switch subroutine
Instruction Interpretation

#A;JP #A;EN Dummy Program

#LIMSWI Limit Switch Utility

V1=_LFX Check if forward limit

V2=_LRX Check if reverse limit

JP#LF,V1=0 Jump to #LF if forward

JP#LR,V2=0 Jump to #LR if reverse

JP#END Jump to end

#LF #LF

MG "FORWARD
LIMIT"

Send message

STX;AMX Stop motion

PR-1000;BGX;AMX Move in reverse

JP#END End

#LR #LR

MG "REVERSE LIMIT" Send message

STX;AMX Stop motion

PR1000;BGX;AMX Move forward

#END End

RE Return to main program

NOTE: An applications program must be executing for #LIMSWI to function.

DMC1000 Chapter 9 Troubleshooting •• 9 - 143

Chapter 9 Troubleshooting

Overview
The following discussion may help you get your system to work.

Potential problems have been divided into groups as follows:

1. Installation

2. Communication

3. Stability and Compensation

4. Operation

The various symptoms along with the cause and the remedy are described in the following tables.

Installation

SYMPTOM CAUSE REMEDY

Motor runs away when connected to amplifier
with no additional inputs.

Amplifier offset too
large.

Adjust amplifier offset

Same as above, but offset adjustment does not
stop the motor.

Damaged amplifier. Replace amplifier.

Same as above, but offset adjustment does not
stop the motor.

Damaged amplifier. Replace amplifier.

Controller does not read changes in encoder
position.

Wrong encoder
connections.

Check encoder wiring.

Same as above Bad encoder Check the encoder signals.
Replace encoder if
necessary.

Same as above Bad controller Connect the encoder to
different axis input. If it
works, controller failure.
Repair or replace.

DMC1000 Chapter 9 Troubleshooting •• 9 - 144

Communication

SYMPTOM CAUSE REMEDY

No communication with host
system.

Address selection in
communication does not match
jumpers.

Check address jumper
positions, and change if
necessary.

Stability

SYMPTOM CAUSE REMEDY

Motor runs away when the loop
is closed.

Wrong feedback polarity. Invert the polarity of the loop by
inverting the motor leads (brush
type) or the encoder.

Motor oscillates. Too high gain or too little
damping.

Decrease KI and KP. Increas e KD.

Operation

SYMPTOM CAUSE REMEDY

Controller rejects command.
Responded with a ?

Invalid Command Interrogate the cause with TC or
TC1.

Motor does not complete move. Noise on limit switches stops
the motor.

To verify cause, check the stop
code (SC). If caused by limit
switch noise, reduce noise.

During a periodic operation,
motor drifts slowly.

Encoder noise Interrogate the position
periodically. If controller states
that the position is t he same at
different locations it implies
encoder noise. Reduce noise.
Use differential encoder inputs.

Same as above. Programming error. Avoid resetting position error at
end of move with SH command.

DMC 1300 Theory of Operation •• 10 - 145

Chapter 10 Theory of Operation

Overview
The following discussion covers the operation of motion control systems. A typical servo control
system consists of the elements shown in Fig 10.1.

COMPUTER CONTROLLER DRIVER

MOTORENCODER

Figure 10.1 - Elements of Servo Systems

The operation of such a system can be divided into three levels, as illustrated in Fig. 10.2. The levels
are:

1. Closing the Loop

2. Motion Profiling

3. Motion Programming

The first level, the closing of the loop, assures that the motor follows the commanded position. This is
done by closing the position loop using a sensor. The operation at the basic level of closing the loop
involves the subjects of modeling, analysis, and design. These subjects will be covered in the
following discussions.

The motion profiling is the generation of the desired position function. This function, R(t), describes
where the motor should be at every sampling period. Note that the profiling and the closing of the loop
are independent functions. The profiling function determines where the motor should be and the
closing of the loop forces the motor to follow the commanded position

DMC 1300 Theory of Operation •• 10 - 146

The highest level of control is the motion program. This can be stored in the host computer or in the
controller. This program describes the tasks in terms of the motors that need to be controlled, the
distances and the speed.

MOTION
PROGRAMMING

MOTION
PROFILING

CLOSED-LOOP
CONTROL

LEVEL

3

2

1

Figure 10.2 - Levels of Control Functions

The three levels of control may be viewed as different levels of management. The top manager, the
motion program, may specify the following instruction, for example.

PR 6000,4000

SP 20000,20000

AC 200000,00000

BG X

AD 2000

BG Y

EN

This program corresponds to the velocity profiles shown in Fig. 10.3. Note that the profiled positions
show where the motors must be at any instant of time.

Finally, it remains up to the servo system to verify that the motor follows the profiled position by
closing the servo loop.

The following section explains the operation of the servo system. First, it is explained qualitatively, and
then the explanation is repeated using analytical tools for those who are more theoretically inclined.

DMC 1300 Theory of Operation •• 10 - 147

Y POSITION

X POSITION

Y VELOCITY

X VELOCITY

TIME

Figure 10.3 - Velocity and Position Profiles

Operation of Closed-Loop Systems
To understand the operation of a servo system, we may compare it to a familiar closed-loop operation,
adjusting the water temperature in the shower. One control objective is to keep the temperature at a
comfortable level, say 90 degrees F. To achieve that, our skin serves as a temperature sensor and
reports to the brain (controller). The brain compares the actual temperature, which is called the
feedback signal, with the desired level of 90 degrees F. The difference between the two levels is called
the error signal. If the feedback temperature is too low, the error is positive, and it triggers an action
which raises the water temperature until the temperature error is reduced sufficiently.

The closing of the servo loop is very similar. Suppose that we want the motor position to be at 90
degrees. The motor position is measured by a position sensor, often an encoder, and the position
feedback is sent to the controller. Like the brain, the controller determines the position error, which is
the difference between the commanded position of 90 degrees and the position feedback. The
controller then outputs a signal that is proportional to the position error. This signal produces a
proportional current in the motor, which causes a motion until the error is reduced. Once the error
becomes small, the resulting current will be too small to overcome the friction, causing the motor to
stop.

DMC 1300 Theory of Operation •• 10 - 148

The analogy between adjusting the water temperature and closing the position loop carries further. We
have all learned the hard way, that the hot water faucet should be turned at the "right" rate. If you turn
it too slowly, the temperature response will be slow, causing discomfort. Such a slow reaction is called
overdamped response.

The results may be worse if we turn the faucet too fast. The overreaction results in temperature
oscillations. When the response of the system oscillates, we say that the system is unstable. Clearly,
unstable responses are bad when we want a constant level.

What causes the oscillations? The basic cause for the instability is a combination of delayed reaction
and high gain. In the case of the temperature control, the delay is due to the water flowing in the pipes.
When the human reaction is too strong, the response becomes unstable.

Servo systems also become unstable if their gain is too high. The delay in servo systems is between
the application of the current and its effect on the position. Note that the current must be applied long
enough to cause a significant effect on the velocity, and the velocity change must last long enough to
cause a position change. This delay, when coupled with high gain, causes instability.

This motion controller includes a special filter which is designed to help the stability and accuracy.
Typically, such a filter produces, in addition to the proportional gain, damping and integrator. The
combination of the three functions is referred to as a PID filter.

The filter parameters are represented by the three constants KP, KI and KD, which correspond to the
proportional, integral and derivative term respectively.

The damping element of the filter acts as a predictor, thereby reducing the delay associated with the
motor response.

The integrator function, represented by the parameter KI, improves the system accuracy. With the KI
parameter, the motor does not stop until it reaches the desired position exactly, regardless of the level
of friction or opposing torque.

The integrator also reduces the system stability. Therefore, it can be used only when the loop is stable
and has a high gain.

The output of the filter is applied to a digital-to-analog converter (DAC). The resulting output signal in
the range between +10 and -10 Volts is then applied to the amplifier and the motor.

The motor position, whether rotary or linear is measured by a sensor. The resulting signal, called
position feedback, is returned to the controller for closing the loop.

The following section describes the operation in a detailed mathematical form, including modeling,
analysis and design.

System Modeling
The elements of a servo system include the motor, driver, encoder and the controller. These elements
are shown in Fig. 10.4. The mathematical model of the various components is given below.

DMC 1300 Theory of Operation •• 10 - 149

DIGITAL
FILTERΣ ZOH DAC

ENCODER

AMP MOTOR

CONTROLLER

R

C

X Y V E

P

Figure 10.4 - Functional Elements of a Servo Control System

Motor-Amplifier
The motor amplifier may be configured in three modes:

1. Voltage Drive

2. Current Drive

3. Velocity Loop

The operation and modeling in the three modes is as follows:

Voltage Drive

The amplifier is a voltage source with a gain of Kv [V/V]. The transfer function relating the input
voltage, V, to the motor position, P, is

 ()()[]P V K K S ST STV t m e= + +1 1

where

 T RJ Km t= 2 [s]

and

 T L Re = [s]

and the motor parameters and units are

Kt Torque constant [Nm/A]

R Armature Resistance Ω

J Combined inertia of motor and load [kg.m2]

L Armature Inductance [H]

When the motor parameters are given in English units, it is necessary to convert the quantities to MKS
units. For example, consider a motor with the parameters:

 Kt = 14.16 oz - in/A = 0.1 Nm/A

 R = 2 Ω

 J = 0.0283 oz-in-s2 = 2.10-4 kg . m2

DMC 1300 Theory of Operation •• 10 - 150

 L = 0.004H

Then the corresponding time constants are

 Tm = 0.04 sec

and

 Te = 0.002 sec

Assuming that the amplifier gain is Kv = 4, the resulting transfer function is

 P/V = 40/[s(0.04s+1)(0.002s+1)]

Current Drive

The current drive generates a current I, which is proportional to the input voltage, V, with a gain of Ka.
The resulting transfer function in this case is

 P/V = Ka Kt / Js2

where Kt and J are as defined previously. For example, a current amplifier with Ka = 2 A/V with the
motor described by the previous example will have the transfer function:

 P/V = 1000/s2 [rad/V]

If the motor is a DC brushless motor, it is driven by an amplifier that performs the commutation. The
combined transfer function of motor amplifier combination is the same as that of a similar brush motor,
as described by the previous equations.

Velocity Loop

The motor driver system may include a velocity loop where the motor velocity is sensed by a
tachometer and is fed back to the amplifier. Such a system is illustrated in Fig. 10.5. Note that the
transfer function between the input voltage V and the velocity ω is:

 ω /V = [Ka Kt/Js]/[1+Ka Kt Kg/Js] = 1/[Kg(sT1+1)]

where the velocity time constant, T1, equals

 T1 = J/Ka Kt Kg

This leads to the transfer function

 P/V = 1/[Kg s(sT1+1)]

Σ K
a

Kt/Js

Kg

V

Figure 10.5 - Elements of velocity loops

The resulting functions derived above are illustrated by the block diagram of Fig. 10.6.

DMC 1300 Theory of Operation •• 10 - 151

Kv

1/Ke

(STm+1)(STe+1)
1
S

V E W P

VOLTAGE SOURCE

Ka

Kt

JS

1

S

V I W P

CURRENT SOURCE

1

S

V W P

VELOCITY LOOP

1

Kg(ST1+1)

Figure 10.6 - Mathematical model of the motor and amplifier in three operational modes

Encoder
The encoder generates N pulses per revolution. It outputs two signals, Channel A and B, which are in
quadrature. Due to the quadrature relationship between the encoder channels, the position resolution
is increased to 4N quadrature counts/rev.

The model of the encoder can be represented by a gain of

 Kf = 4N/2π [count/rad]

For example, a 1000 lines/rev encoder is modeled as

 Kf = 638

DMC 1300 Theory of Operation •• 10 - 152

DAC
The DAC or D-to-A converter converts a 16-bit number to an analog voltage. The input range of the
numbers is 65536 and the output voltage range is +/-10V or 20V. Therefore, the effective gain of the
DAC is

 K= 20/65536 = 0.0003 [V/count]

Digital Filter
The digital filter has a transfer function of D(z) = K(z-A)/z + Cz/z-1 and a sampling time of T.

The filter parameters, K, A and C are selected by the instructions KP, KD, KI or by GN, ZR and KI,
respectively. The relationship between the filter coefficients and the instructions are:

K = (KP + KD) ⋅ 4 or K = GN ⋅ 4

A = KD/(KP + KD) or A = ZR

C = KI/2

This filter includes a lead compensation and an integrator. It is equivalent to a continuous PID filter
with a transfer function G(s).

 G(s) = P + sD + I/s

 P = K(1-A) = 4 ⋅ KP

 D = T⋅ K⋅ A = 4 ⋅ T ⋅ KD

 I = C/T = KI/2T

For example, if the filter parameters of the DMC 1300 are

 KP = 4

 KD = 36

 KI = 2

 T = 0.001 s

the digital filter coefficients are

 K = 160

 A = 0.9

 C = 1

and the equivalent continuous filter, G(s), is

 G(s) = 16 + 0.144s + 1000/s

ZOH
The ZOH, or zero-order-hold, represents the effect of the sampling process, where the motor command
is updated once per samp ling period. The effect of the ZOH can be modeled by the transfer function

 H(s) = 1/(1+sT/2)

If the sampling period is T = 0.001, for example, H(s) becomes:

 H(s) = 2000/(s+2000)

DMC 1300 Theory of Operation •• 10 - 153

However, in most applications, H(s) may be approximated as one.

This completes the modeling of the system elements. Next, we discuss the system analysis.

System Analysis
To analyze the system, we start with a block diagram model of the system elements. The analysis
procedure is illustrated in terms of the following example.

Consider a position control system with the DMC 1300 controller and the following parameters:

Kt = 0.1 Nm/A Torque constant

J = 2.10-4 kg.m2 System moment of inertia

R = 2 Ω Motor resistance

Ka = 4 Amp/Volt Current amplifier gain

KP = 12.5 Digital filter gain

KD = 245 Digital filter zero

KI = 0 No integrator

N = 500 Counts/rev Encoder line density

T = 1 ms Sample period

The transfer function of the system elements are:

Motor

 M(s) = P/I = Kt/Js2 = 500/s2 [rad/A]

Amp

 Ka = 4 [Amp/V]

DAC

 Kd = 0.0003 [V/count]

Encoder

 Kf = 4N/2π = 318 [count/rad]

ZOH

 2000/(s+2000)

Digital Filter

 KP = 12.5, KD = 245, T = 0.001

Therefore,

 D(z) = 50 + 980 (1-z-1)

Accordingly, the coefficients of the continuous filter are:

 P = 50

 D = 0.98

The filter equation may be written in the continuous equivalent form:

 G(s) = 50 + 0.98s

DMC 1300 Theory of Operation •• 10 - 154

The system elements are shown in Fig. 10.7.

Σ 50+0.980s

318

V

ENCODER

500
S2

FILTER

2000
S+2000

0.0003 4

ZOH DAC AMP MOTOR

Figure 10.7 - Mathematical model of the control system

The open loop transfer function, A(s), is the product of all the elements in the loop.

 A = 390,000 (s+51)/[s2(s+2000)]

To analyze the system stability, determine the crossover frequency, ωc at which A(j ωc) equals one.
This can be done by the Bode plot of A(j ωc), as shown in Fig. 10.8.

1

4

0.1

50 200 2000 W (rad/s)

Magnitude

Figure 10.8 - Bode plot of the open loop transfer function

For the given example, the crossover frequency was computed numerically resulting in 200 rad/s.

Next, we determine the phase of A(s) at the crossover frequency.

 A(j200) = 390,000 (j200+51)/[(j200)2 . (j200 + 2000)]

 α = Arg[A(j200)] = tan-1(200/51)-180° -tan-1(200/2000)

 α = 76° - 180° - 6° = -110°

DMC 1300 Theory of Operation •• 10 - 155

Finally, the phase margin, PM, equals

 PM = 180° + α = 70°

As long as PM is positive, the system is stable. However, for a well damped system, PM should be
between 30 degrees and 45 degrees. The phase margin of 70 degrees given above indicated
overdamped response.

Next, we discuss the design of control systems.

System Design and Compensation
The closed-loop control system can be stabilized by a digital filter, which is preprogrammed in the DMC
1300 controller. The filter parameters can be selected by the user for the best compensation. The
following discussion presents an analytical design method.

The Analytical Method
The analytical design method is aimed at closing the loop at a crossover frequency, ωc, with a phase
margin PM. The system parameters are assumed known. The design procedure is best illustrated by a
design example.

Consider a system with the following parameters:

Kt Nm/A Torque constant

J = 2.10-4 kg.m2 System moment of inertia

R = 2 Ω Motor resistance

Ka = 2 Amp/Volt Current amplifier gain

N = 1000 Counts/rev Encoder line density

The DAC of the DMC 1300 outputs +/-10V for a 14-bit command of +/-8192 counts.

The design objective is to select the filter parameters in order to close a position loop with a crossover
frequency of ωc = 500 rad/s and a phase margin of 45 degrees.

The first step is to develop a mathematical model of the system, as discussed in the previous system.

Motor

 M(s) = P/I = Kt/Js2 = 1000/s2

Amp

 Ka = 2 [Amp/V]

DAC

 Kd = 20/65536 = .0003

Encoder

 Kf = 4N/2π = 636

ZOH

 H(s) = 2000/(s+2000)

Compensation Filter

 G(s) = P + sD

DMC 1300 Theory of Operation •• 10 - 156

The next step is to combine all the system elements, with the exception of G(s), into one function, L(s).

 L(s) = M(s) Ka Kd Kf H(s) = 0.3175*107/[s2(s+2000)]

Then the open loop transfer function, A(s), is

 A(s) = L(s) G(s)

Now, determine the magnitude and phase of L(s) at the frequency ωc = 500.

 L(j500) = 0.3175*107/[(j500)2 (j500+2000)]

This function has a magnitude of

 |L(j500)| = 0.00625

and a phase

 Arg[L(j500)] = -180° - tan-1(500/2000) = -194°

G(s) is selected so that A(s) has a crossover frequency of 500 rad/s and a phase margin of 45 degrees.
This requires that

 |A(j500)| = 1

 Arg [A(j500)] = -135°

However, since

 A(s) = L(s) G(s)

then it follows that G(s) must have magnitude of

 |G(j500)| = |A(j500)/L(j500)| = 160

and a phase

 arg [G(j500)] = arg [A(j500)] - arg [L(j500)] = -135° + 194° = 59°

In other words, we need to select a filter function G(s) of the form

 G(s) = P + sD

so that at the frequency ωc =500, the function would have a magnitude of 160 and a phase lead of 59
degrees.

These requirements may be expressed as:

 |G(j500)| = |P + (j500D)| = 160

and

 arg [G(j500)] = tan-1[500D/P] = 59°

The solution of these equations leads to:

 P = 40cos 59° = 82.4

 500D = 40sin 59° = 137.2

Therefore,

 D = 0.2744

and

 G = 82.4 + 0.2744s

The function G is equivalent to a digital filter of the form:

 D(z) = 4 • KP + 4 • KD(1-z-1)

DMC 1300 Theory of Operation •• 10 - 157

where

 KP = P/4

and

KD = D/ (4 • T)

Assuming a sampling period of T=1ms, the parameters of the digital filter are:

 KP = 20.6

 KD = 68.6

The DMC 1300 can be programmed with the instruction:

 KP 20.6

 KD 68.6

In a similar manner, other filters can be programmed. The procedure is simplified by the following table,
which summarizes the relationship between the various filters.

Equivalent Filter Form

 DMC 1300

Digital D(z) = K(z-A/z) + Cz/(z-1)

Digital D(z) = 4 KP + 4 KD(1-z-1) + KI/2(1-z-1)

KP, KD, KI K = (KP + KD) ⋅ 4

 A = KD/(KP+KD)

 C = KI/2

Digital D(z) = 4 GN(z-ZR)/z + KI z/2(z-1)

GN, ZR, KI K = 4 GN

 A = ZR

 C = KI/2

Continuous G(s) = P + Ds + I/s

PID, T P = 4 KP

 D = 4 T*KD

 I = KI/2T

DMC 1300 Theory of Operation •• 10 - 158

THIS PAGE LEFT BLANK INTENTIONALLY

DMC 1300 Error! Reference source not found. •• 10 - 159

Chapter 11 Command Reference

Command Descriptions
Each executable instruction is listed in the following section in alphabetical order. Below is a
description of the information which is provided for each command.

The two-letter Opcode for each instruction is placed in the upper right corner. Commands that have a
binary equivalent list the binary value next to the ASCII command in parenthesis. Below the opcode is
a description of the command and required arguments.

Axes Arguments
Some commands require the user to identify the specific axes to be affected. These commands are
followed by uppercase X,Y,Z, W or A,B,C,D,E,F,G and H. No commas are needed and the order of axes
is not important. Do not insert any spaces prior to any command. For example, STX; AMX is invalid
because there is a space after the semicolon. When no argument is given, the command is executed for
all axes.

Valid XYZW syntax

SH X Servo Here, X only

SH XYW Servo Here, X,Y and W axes

SH XZW Servo Here, X,Z and W axes

SH XYZW Servo Here, X,Y,Z and W axes

SH BCAD Servo Here, A,B,C and D axes (Note: ABCD IS the same as XYZW)

SH ADEG Servo Here, A,D,E and G axes (Note: AD is the same as XW)

SH H Servo Here, H axis only

SH Servo Here, all axes

Parameter Arguments
Some commands require numerical arguments to be specified following the instruction. In the argument
description, these commands are followed by lower case x,y,z,w or a,b,c,d,e,f,g,h where the lowercase
letter represents the value. Values may be specified for any axis separately or any combination of axes.
The argument for each axis is separated by commas. Examples of valid syntax are listed below.

DMC 1300 Error! Reference source not found. •• 10 - 160

Valid x,y,z,w syntax

AC x Specify argument for x axis only

AC x,y Specify x and y only

AC x,,z Specify x and z only

AC x,y,z,w Specify x,y,z,w

AC a,b,c,d Specify arguments for a,b,c,d (Note: a,b,c,d are the same as x,y,z,w)

AC ,b,,,e Specify b and e axis only (Note: b and y axis are the same)

AC ,,,e,f Specify e and f (Note: e and z axis are the same)

Where x,y,z,w and a,b,c,d,e,f,g and h are replaced by actual values.

Direct Command Arguments
An alternative method for specifying data is to set data for individual axes using an axis designator
followed by an equals sign. The * symbol defines data for all axes to be the same. For example:

PRY=1000 Sets Y axis data at 1000

PR*=1000 Sets all axes to 1000

Interrogation
Most commands accept a question mark (?) as an argument. This argument causes the controller to
return parameter information listed in the command description. Type the command followed by a ? for
each axis requested. The syntax format is the same as the parameter arguments described above except
'?' replaces the values.

PR ? The controller will return the PR value for the X axis

PR ,,,? The controller will return the PR value for the W axis

PR ?,?,?,? The controller will return the PR value for the A,B,C and D axes

PR ,,,,,,,? The controller will return the PR value for the H axis

Operand Usage
Most commands have a corresponding operand that can be used for interrogation. The Operand Usage
description provides proper syntax and the value returned by the operand. Operands must be used
inside of valid DMC expressions. For example, to display the value of an operand, the user could use
the command:

 MG ‘operand’

All of the command operands begin with the underscore character (_). For example, the value of the
current position on the X axis can be assigned to the variable ‘V’ with the command:

 V=_TPX

Usage Description
The Usage description specifies the restrictions on proper command usage. The following provides an
explanation of the command information provided:

DMC 1300 Error! Reference source not found. •• 10 - 161

"While Moving" states whether or not the command is valid while the controller is performing a
previously defined motion.

"In a program" states whether the command may be used as part of a user-defined program.

"Command Line" states whether the command may be used other than in a user-defined program.

"Can be Interrogated" states whether or not the command can be interrogated by using the ? as a
command argument.

"Used as an Operand" states whether the command has an associated operand.

Default Description
In the command description, the DEFAULT section provides the default values for controller setup
parameters. These parameters can be changed and the new values can be saved in the controller's non-
volatile memory by using the command, BN. If the setup parameters are not saved in non-volatile
memory, the default values will automatically reset when the system is reset. A reset occurs when the
power is turned off and on, when the reset button is pushed, or the command, RS, is given.

When a master reset occurs, the controller will always reset all setup parameters to their default values
and the non-volatile memory is cleared to the factory state. A master reset is executed by the command,
<ctrl R> <ctrl S> <Return> OR by powering up or resetting the controller with the MRST jumper or dip
switch on.

For example, the command KD is used to set the Derivative Constant for each axis. The default value
for the derivative constant is 64. If this parameter is not set by using the command, KD, the controller
will automatically set this value to 64 for each axis. If the Derivative Constant is changed but not saved
in non-volatile memory, the default value of 64 will be used if the controller is reset or upon power up of
the controller. If this value is set and saved in non-volatile memory, it will be restored upon reset until a
master reset is given to the controller.

The default format describes the format for numerical values which are returned when the command is
interrogated. The format value represents the number of digits before and after the decimal point.

Servo and Stepper Motor Notation:
Your motion controller has been designed to work with both servo and stepper type motors.
Installation and system setup will vary depending upon whether the controller will be used with stepper
motors, or servo motors. To make finding the appropriate instructions faster and easier, icons will be
next to any information that applies exclusively to one type of system. Otherwise, assume that the
instructions apply to all types of systems. The icon legend is shown below.

Attention: Pertains to servo motor use.

Attention: Pertains to stepper motor use.

DMC 1300 Error! Reference source not found. •• 10 - 162

AB (Binary D3)
FUNCTION: Abort

DESCRIPTION:

AB (Abort) stops a motion instantly without a controlled deceleration. If there is a
program operating, AB also aborts the program unless a 1 argument is specified.
The command, AB, will shut off the motors for any axis in which the off-on-error
function is enabled (see command "OE" on page 243).

ARGUMENTS: AB n where

n = no argument or 1

1 aborts motion without aborting program, 0 aborts motion and program

AB aborts motion on all axes in motion and cannot stop individual axes.

USAGE: DEFAULTS:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"SH" on page 263 Turns servos back on if they were shut-off by Abort and OE1.

EXAMPLES:

AB Stops motion

OE 1,1,1,1 Enable off-on-error

AB Shuts off motor command and stops motion

#A Label - Start of program

JG 20000 Specify jog speed on X-axis

BGX Begin jog on X-axis

WT 5000 Wait 5000 msec

AB1 Stop motion without aborting program

WT 5000 Wait 5000 milliseconds

SH Servo Here

JP #A Jump to Label A

EN End of the routine

Hint: Remember to use the parameter 1 following AB if you only want the motion to be aborted.
Otherwise, your application program will also be aborted.

DMC 1300 Error! Reference source not found. •• 10 - 163

AC (Binary CC)
FUNCTION: Acceleration

DESCRIPTION:

The Acceleration (AC) command sets the linear acceleration rate of the motors for
independent moves, such as PR, PA and JG moves. The parameters input will be
rounded down to the nearest factor of 1024. The units of the parameters are
counts per second squared. The acceleration rate may be changed during
motion. The DC command is used to specify the deceleration rate.

ARGUMENTS: AC x,y,z,w ACX=x AC a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range in the range 1024 to 67107840

"?" returns the acceleration value for the specified axes.

USAGE: DEFAULTS:

While Moving Yes Default Value 25600

In a Program Yes Default Format 8.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_ACx contains the value of acceleration for the specified axis.

RELATED COMMANDS:

"DC" on page 191 Specifies deceleration rate.

"FA" on page 204 Feedforward Acceleration

"IT" on page 219 Smoothing constant - S-curve

EXAMPLES:

AC 150000,200000,300000,400000 Set X-axis acceleration to 150000, Y-axis to
200000 counts/sec2, the Z-axis to 300000
counts/sec2, and the W -axis to 400000
count/sec2.

AC ?,?,?,? Request the Acceleration

0149504,0199680,0299008,0399360 Return Acceleration

(resolution, 1024)

V=_ACY Assigns the Y acceleration to the variable
V

Hint: Specify realistic acceleration rates based on your physical system such as motor torque rating,
loads, and amplifier current rating. Specifying an excessive acceleration will cause large following
error during acceleration and the motor will not follow the commanded profile. The acceleration
feedforward command FA will help minimize the error.

DMC 1300 Error! Reference source not found. •• 10 - 164

AD (Binary A2)
FUNCTION: After Distance

DESCRIPTION:

The After Distance (AD) command is a trippoint used to control the timing of events.
This command will hold up the execution of the following command until one of
the following conditions have been met:

1. The commanded motor position crosses the specified relative distance from the start
of the move.

2. The motion profiling on the axis is complete.

3. The commanded motion is in the direction which moves away from the specified
position.

The units of the command are quadrature counts. Only one axis may be specified at a time.
The motion profiler must be on or the trippoint will automatically be satisfied.

ARGUMENTS: AD x or AD,y or AD,,z or AD,,,w ADX=x AD a,b,c,d,e,f,g,h where

x,y,z,w are unsigned integers in the range 0 to 2147483647 decimal.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"AD" on page 164 After distance for repetitive triggering

"AV" on page 173 After distance for vector moves

EXAMPLES:

#A;DP0,0,0,0 Begin Program

PR 10000,20000,30000,40000 Specify positions

BG Begin motion

AD 5000 After X reaches 5000

MG "Halfway to X";TPX Send message

AD ,10000 After Y reaches 10000

MG "Halfway to Y";TPY Send message

AD ,,15000 After Z reaches 15000

MG "Halfway to Z";TPZ Send message

AD ,,,20000 After W reaches 20000

MG "Halfway to W";TPW Send message

EN End Program

Hint: The AD command is accurate to the number of counts that occur in 2 msec. Multiply your
speed by 2 msec to obtain the maximum position error in counts. Remember AD measures incremental

DMC 1300 Error! Reference source not found. •• 10 - 165

distance from start of move on one axis.

DMC 1300 Error! Reference source not found. •• 10 - 166

AI (Binary A1)
FUNCTION: After Input

DESCRIPTION:

The AI command is used in motion programs to wait until after the specified input has
occurred. If n is positive, it waits for the input to go high. If n is negative, it
waits for n to go low.

ARGUMENTS: AI +/-n where

n is an integer in the range 1 to 8 decimal

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

@IN[n] Function to read input 1 through 8

"II" on page 215 Input interrupt

#ININT Label for input interrupt

EXAMPLES:

#A Begin Program

AI 8 Wait until input 8 is high

SP 10000 Speed is 10000 counts/sec

AC 20000 Acceleration is 20000 counts/sec2

PR 400 Specify position

BG X Begin motion

EN End Program

Hint: The AI command actually halts execution until specified input is at desired logic level. Use the
conditional Jump command (JP) or input interrupt (II) if you do not want the program sequence to
halt.

DMC 1300 Error! Reference source not found. •• 10 - 167

AL (Binary 90)
FUNCTION: Arm Latch

DESCRIPTION:

The AL command enables the latching function (high speed main or auxiliary position
capture) of the controller. When the position latch is armed, the main or auxiliary
encoder position will be captured upon a low going signal. Each axis has a
position latch and can be activated through the general inputs: Input 1 (X or A
axis), Input 2 (Y or B axis), Input 3 (Z or C axis), Input 4 (W or D axis), Input 5 (E
axis), Input 6 (F axis), Input 7 (6 axis). The command RL returns the captured
position for the specified axes. When interrogated the AL command will return a
1 if the latch for that axis is armed or a zero after the latch has occurred. The CN
command will change the polarity of the latch.

ARGUMENTS: AL XYZW where

 X,Y,Z,W specifies the X,Y,Z,W axes.

DPRAM:

The latch status can be read at bit 2 of the Status #2 address in the Axis Buffer. Bit 6
of the Switches address in the Axis Buffer will also indicate the status of the
latch, while Bit 7 of that address will indicate when the latch has occurred.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_ALx contains the state of the specified latch. 0 = not armed, 1 = armed.

RELATED COMMANDS:

"RL" on page 254 Report Latch

EXAMPLES:

#START Start program

ALY Arm Y-axis latch

JG,50000 Set up jog at 50000 counts/sec

BGY Begin the move

#LOOP Loop until latch has occurred

JP #LOOP,_ALY=1

RLY Transmit the latched position

EN End of program

DMC 1300 Error! Reference source not found. •• 10 - 168

AM (Binary A4)
FUNCTION: After Move

DESCRIPTION:

The AM command is a trippoint used to control the timing of events. This command
will hold up execution of the following commands until the current move on the
specified axis or axes is completed. Any combination of axes or a motion
sequence may be specified with the AM command. For example, AM XY waits
for motion on both the X and Y axis to be complete. AM with no parameter
specifies that motion on all axes is complete.

ARGUMENTS: AM XYZW or AMS where

X,Y,Z,W specifies X,Y,Z or W axis and S specifies sequence. No argument specifies
that motion on all axes is complete.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"BG" on page 174 _BGx contains a 0 if motion complete

EXAMPLES:

#MOVE Program MOVE

PR 5000,5000,5000,5000 Position relative moves

BG X Start the X-axis

AM X After the move is complete on X,

BG Y Start the Y-axis

AM Y After the move is complete on Y,

BG Z Start the Z -axis

AM Z After the move is complete on Z

BG W Start the W -axis

AM W After the move is complete on W

EN End of Program

Hint: AM is a very important command for controlling the timing between multiple move sequences.
For example, if the X-axis is in the middle of a position relative move (PR) you cannot make a
position absolute move (PAX, BGX) until the first move is complete. Use AMX to halt the program
sequences until the first motion is complete. AM tests for profile completion. The actual motor may
still be moving. Another method for testing motion complete is to check for the internal variable,
_BG, being equal to zero.

DMC 1300 Error! Reference source not found. •• 10 - 169

AP (Binary A3)
FUNCTION: After Absolute Position

DESCRIPTION:

The After Position (AP) command is a trippoint used to control the timing of events.
This command will hold up the execution of the following command until one of
the following conditions have been met:

1. The commanded motor position crosses the specified absolute position.

2. The motion profiling on the axis is complete.

3. The commanded motion is in the direction which moves away from the specified
position.

The units of the command are quadrature counts. Only one axis may be specified at a time.
The motion profiler must be on or the trippoint will automatically be satisfied

ARGUMENTS: APx or AP,y or AP,,z or AP,,,w APX=x AP abcdefgh where

x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE: DEFAULTS:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"AD" on page 164 Trippoint for relative distances

“MF" on page 236 Trippoint for forward motion

EXAMPLES:

#TEST Program B

DP0 Define zero

JG 1000 Jog mode (speed of 1000 counts/sec)

BG X Begin move

AP 2000 After passing the position 2000

V1=_TPX Assign V1 X position

MG "Position is", V1= Print Message

ST Stop

EN End of Program

Hint: The accuracy of the AP command is the number of counts that occur in 2 msec. Multiply the
speed by 2 msec to obtain the maximum error. AP tests for absolute position. Use the AD command to
measure incremental distances.

DMC 1300 Error! Reference source not found. •• 10 - 170

AR (Binary CF)
FUNCTION: After Relative Distance

DESCRIPTION:

The After Relative (AR) command is a trippoint used to control the timing of events.
This command will hold up the execution of the following command until one of
the following conditions have been met:

1. The commanded motor position crosses the specified relative distance from either the
start of the move or the last AR or AD command.

2. The motion profiling on the axis is complete.

3. The commanded motion is in the direction which moves away from the specified
position.

The units of the command are quadrature counts. Only one axis may be specified at a
time. The motion profiler must be on or the trippoint will automatically be
satisfied.

ARGUMENTS: ARx or AR,y or AR,,z or AR,,,w ARX=X AR abcdefgh where

x,y,z,w are unsigned integers in the range 0 to 2147483647 decimal.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"AV" on page 173 Trippoint for after vector position for coordinated
moves

"AP (Binary A3)" on page 169 Trippoint for after absolute position

EXAMPLES:

#A;DP 0,0,0,0 Begin Program

JG 50000,,,7000 Specify speeds

BG XW Begin motion

#B Label

AR 25000 After passing 25000 counts of relative distance on
X-axis

MG "Passed_X";TPX Send message on X-axis

JP #B Jump to Label #B

EN End Program

Hint: AR is used to specify incremental distance from last AR or AD command. Use AR if multiple
position trippoints are needed in a single motion sequence.

DMC 1300 Error! Reference source not found. •• 10 - 171

AS (Binary A5)
FUNCTION: At Speed

DESCRIPTION:

The AS command is a trippoint that occurs when the generated motion profile has
reached the specified speed. This command will hold up execution of the
following command until the speed is reached. The AS command will operate
after either accelerating or decelerating. If the speed is not reached, the trippoint
will be triggered after the motion is stopped (after deceleration).

ARGUMENTS: AS X or AS Y or AS Z or AS W or AS S AS ABCDEFGH where

XYZWS specifies X,Y,Z,W axis or sequence

DPRAM:

Bit 5 of the Status #2 address in the Axis Buffer will indicate if the controller is at slew
speed.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

EXAMPLES:

#SPEED Program A

PR 100000 Specify position

SP 10000 Specify speed

BG X Begin X

ASX After speed is reached

MG "At Speed" Print Message

EN End of Program

WARNING:

The AS command applies to a trapezoidal velocity profile only with linear acceleration. AS used with S-
curve profiling will be inaccurate.

DMC 1300 Error! Reference source not found. •• 10 - 172

AT (Binary A7)
FUNCTION: At Time

DESCRIPTION:

The AT command is a trippoint which is used to hold up execution of the next
command until after the specified time has elapsed. The time is measured with
respect to a defined reference time. AT 0 establishes the initial reference. AT n
specifies n msec from the reference. AT -n specifies n msec from the reference
and establishes a new reference after the elapsed time period.

ARGUMENTS: AT n where

 n is a signed integer in the range 0 to 2 Billion

 n = 0 defines a reference time at current time

positive n waits n msec from reference

negative n waits n msec from reference and sets new reference after elapsed time
period

(AT -n is equivalent to AT n; AT 0)

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

EXAMPLES:

The following commands are sent sequentially

AT 0 Establishes reference time 0 as current time

AT 50 Waits 50 msec from reference 0

AT 100 Waits 100 msec from reference 0

AT -150 Waits 150 msec from reference 0 and sets new reference at 150

AT 80 Waits 80 msec from new reference (total elapsed time is 230 msec)

DMC 1300 Error! Reference source not found. •• 10 - 173

AV (Binary AB)
FUNCTION: After Vector Distance

DESCRIPTION:

The AV command is a trippoint which is used to hold up execution of the next
command during coordinated moves such as VP,CR or LI. This trippoint occurs
when the path distance of a sequence reaches the specified value. The distance
is measured from the start of a coordinated move sequence or from the last AV
command. The units of the command are quadrature counts.

ARGUMENTS: AV n where

n is an unsigned integer in the range 0 to 2147483647 decimal

USAGE: DEFAULTS:

While M oving Yes Default Value 0

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_AV contains the vector distance from the start of the sequence. _AV is valid in the
linear mode, LM and in the vector mode, VM.

EXAMPLES:

#MOVE;DP 0,0 Label

LMXY Linear move for X,Y

LI 1000,2000 Specify distance

LI 2000,3000 Specify distance

LE

BGS Begin

AV 500 After path distance = 500,

DMC 1300 Error! Reference source not found. •• 10 - 174

BG (Binary CE)
FUNCTION: Begin

DESCRIPTION:

The BG command starts a motion on the specified axis or sequence.

ARGUMENTS: BG XYZWS BG ABCDEFGH where

 XYZW are X,Y,Z,W axes and S is coordinated sequence

DPRAM:

Bit 7 of the Status #1 address in the Axis Buffer will indicate if there is motion on a
given axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_BG contains a ‘0’ if motion complete on the specified axis, otherwise contains a ‘1’.

RELATED COMMANDS:

"AM" on page 168 After motion complete

"ST" on page 265 Stop motion

EXAMPLES:

PR 2000,3000,,5000 Set up for a relative move

BG XYW Start the X,Y and W motors moving

HM Set up for the homing

BGX Start only the X-axis moving

JG 1000,4000 Set up for jog

BGY Start only the Y-axis moving

YSTATE=_BGY Assign a 1 to YSTATE if the Y-axis is performing a move

VP 1000,2000 Specify vector position

VS 20000 Specify vector velocity

BGS Begin coordinated sequen0ce

VMXY Vector Mode

VP 4000,-1000 Specify vector position

VE Vector End

PR ,,8000,5000 Specify Z and W position

BGSZW Begin sequence and Z,W motion

MG _BGS Displays a 1 if coordinated sequence move is running

DMC 1300 Error! Reference source not found. •• 10 - 175

Hint: You cannot give another BG command until current BG motion has been completed. Use the
AM trippoint to wait for motion complete between moves. Another method for checking motion
complete is to test for _BG being equal to 0.

DMC 1300 Error! Reference source not found. •• 10 - 176

BL (Binary C7)
FUNCTION: Reverse Software Limit

DESCRIPTION:

The BL command sets the reverse software limit. If this limit is exceeding during
motion, motion on that axis will decelerate to a stop. Reverse motion beyond this
limit is not permitted. The reverse limit is activated at X-1, Y-1, Z-1, W-1. To
disable the reverse limit, set X,Y,Z,W to -2147483648. The units are in quadrature
counts.

ARGUMENTS: BL x,y,z,w BLX=x BL a,b,c,d,e,f,g,h where

x,y,z,w are signed integers in the range -2147483648 to 2147483647.

-214783648 turns off the reverse limit.

"?" returns the reverse software limit for the specified axes.

USAGE: DEFAULTS:

While Moving Yes Default Value -214783648

In a Program Yes Default Format Position format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_BLx contains the value of the reverse software limit for the specified axis.

RELATED COMMANDS:

 "FL" on page 207 Forward Limit

EXAMPLES:

#TEST Test Program

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

BL -15000 Set Reverse Limit

JG -5000 Jog Reverse

BGX Begin Motion

AMX After Motion (limit occurred)

TPX Tell Position

EN End Program

Hint: Galil Controllers also provide hardware limits.

DMC 1300 Error! Reference source not found. •• 10 - 177

BN (Binary B0)
FUNCTION: Burn

DESCRIPTION:

The BN command saves controller parameters, variables, arrays and applications programs
shown below in Flash EEPROM memory. This command typically takes 1 second to execute
and must not be interrupted. The controller returns a : when the Burn is complete.

PARAMETERS SAVED DURING BURN:

AC ER OP

BL FL PF

CB GA SB

CE GR SP

CN IL TL

CO KD (ZR converted to KD) TM

CW KI VA

DV KP (GN converted to KP) VD

DC MO (MOTOR OFF or ON) VF

EO MT VS

PL OE VT

ARGUMENTS: None

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

OPERAND USAGE:

_BN contains the serial number of the controller.

EXAMPLES:

KD 100 Set damping term for X axis

KP 10 Set proportional gain term for X axis

KI 1 Set integral gain term for X axis

AC 200000 Set acceleration

DC 150000 Set deceleration rate

SP 10000 Set speed

MT -1 Set motor type for X axis to be type ‘-1’, reversed polarity servo
motor

MO Turn motor off

DMC 1300 Error! Reference source not found. •• 10 - 178

BP (Binary B2)
FUNCTION: Burn Program

DESCRIPTION::

The BP command saves the application program in non-volatile EEPROM memory.
This command typically takes up to 10 seconds to execute and must not be
interrupted. The controller returns a : when the Burn is complete.

ARGUMENTS: None

USAGE: DEFAULTS:

While Moving No Default Value ---

In a Program No

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:

"BN" on page 177 Burn Parameters

"BV" on page 179 Burn Variable

Note: This command may cause the Galil software to issue the following warning "A time-out occurred while
waiting for a response from the controller". This warning is normal and is designed to warn the user when the
controller does not respond to a command within the timeout period. This occurs because this command takes
more time than the default timeout of 1 sec. The timeout can be changed in the Galil software but this warning
does not affect the operation of the controller or software.

DMC 1300 Error! Reference source not found. •• 10 - 179

BV (Binary B2)
FUNCTION: Burn Variables

DESCRIPTION::

The BV command saves the controller variables in non-volatile EEPROM memory.
This command typically takes up to 2 seconds to execute and must not be
interrupted. The controller returns a : when the Burn is complete.

ARGUMENTS: None

USAGE: DEFAULTS:

While Moving No Default Value ---

In a Program Yes

Not in a Program Yes

Can be Interrogated No

Used in an Operand No

RELATED COMMANDS:

“BN” on page 27 Burn Parameters

“BP” on page 29 Burn Program

Note: This command may cause the Galil software to issue the following warning "A time-out occurred while
waiting for a response from the controller". This warning is normal and is designed to warn the user when the
controller does not respond to a command within the timeout period. This occurs because this command takes
more time than the default timeout of 1 sec. The timeout can be changed in the Galil software but this warning
does not affect the operation of the controller or software.

DMC 1300 Error! Reference source not found. •• 10 - 180

CB (Binary 8E)
FUNCTION: Clear Bit

DESCRIPTION:

The CB command sets the specified output bit low. CB can be used to clear the
outputs of ext ended I/O which have been configured as outputs.

ARGUMENTS: CB n, where

 n is an integer corresponding to the output bit to be cleared. The first output bit is
specified as 1.

DPRAM:

The status of the output ports are located at address 02B on the DMC 1310/1340 or
02E-02F on the DMC 1350/1380. Writing to these addresses will change the state
of the output ports.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"SB" on page 261 Set Bit

"OP” on page 245 Define output port (bytewise).

DMC 1300 Error! Reference source not found. •• 10 - 181

CD (No Binary)
FUNCTION: Contour Data

DESCRIPTION:

The CD command specifies the incremental position on X,Y,Z and W axes. The units
of the command are in quadrature counts. This command is used only in the
Contour Mode (CM).

ARGUMENTS: CD x,y,z,w CDX=x CD a,b,c,d,e,f,g,h where

x,y,z,w are integers in the range of +/-32762

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"CM" on page 183 Contour Mode

"W C" on page 295 Wait for Contour

"DT" on page 195 Time Increment

"CS" on page 188 _CS is the Segment Counter

EXAMPLES:

CM XYZW Specify Contour Mode

DT 4 Specify time increment for contour

CD 200,350,-150,500 Specify incremental positions on X,Y,Z and W axes X-axis moves
200 counts Y-axis moves 350 counts Z -axis moves -150 counts W -
axis moves 500 counts

W C Wait fo r complete

CD 100,200,300,400 New position data

W C Wait for complete

DT0 Stop Contour

CD 0,0,0,0 Exit Mode

DMC 1300 Error! Reference source not found. •• 10 - 182

CE (Binary F2)
FUNCTION: Configure Encoder

DESCRIPTION:

The CE command configures the encoder to the quadrature type or the pulse and
direction type. It also allows inverting the polarity of the encoders. The
configuration applies independently to the four main axes encoders and the four
auxiliary encoders.

ARGUMENTS: CE x,y,z,w CEX=x CE a,b,c,d,e,f,g,h where

x,y,z,w are integers in the range of 0 to 15. Each integer is the sum of two integers n
and m which configure the main and the auxiliary encoders. The values of m and
n are

M = MAIN ENCODER TYPE N = AUXILIARY ENCODER TYPE

0 Normal quadrature 0 Normal quadrature

1 Normal pulse and direction 4 Normal pulse and direction

2 Reversed quadrature 8 Reversed quadrature

3 Reversed pulse and direction 12 Reversed pulse and direction

For example: x = 6 implies m = 2 and n = 4, both encoders are reversed quadrature.

"?" returns the value of the encoder configuration for the specified axes.

USAGE: DEFAULTS:

While Moving Yes Default Value O

In a Program Yes Default Format 2.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

 _CEx contains the value of encoder type for the axis specified by ‘x’.

RELATED COMMANDS:

"MT" on page 240 Specify motor type

EXAMPLES:

CE 0, 3, 6, 2 Configure encoders

CE ?,?,?,? Interrogate configuration

V = _CEX Assign configuration to a variable

Note: When using pulse and direction encoders, the pulse signal is connected to CHA and the
direction signal is connected to CHB.

DMC 1300 Error! Reference source not found. •• 10 - 183

CM (Binary D4)
FUNCTION: Contouring Mode

DESCRIPTION:

The Contour Mode is initiated by the instruction CM. This mode allows the
generation of an arbitrary motion trajectory with any of the axes. The CD
command specified the position increment, and the DT command specifies the
time interval.

The command, CM?, can be used to check the status of the Contour Buffer. A value
of 1 returned from the command CM? indicates that the Contour Buffer is full. A
value of 0 indicates that the Contour Buffer is empty.

ARGUMENTS: CM XYZW CM ABCDEFGH where

 the argument specifies the axes to be affected.

CM? returns a 1 if the contour buffer is full and 0 if the contour buffer is empty.

DPRAM:

The contour mode status can be read at bit 5 of address 010 of the General Status and
at bit 6 of the Status #2 address in the Axis Buffer.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 2.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

 _CM contains a ‘0’ if the contour buffer is empty, otherwise contains a ‘1’.

RELATED COMMANDS:

"CD" on page 181 Contour Data

"W C" on page 295 Wait for Contour

"DT" on page 195 Time Increment

EXAMPLES:

V=_CM;V= Return contour buffer status

CM? Return contour buffer status

CM XZ Specify X,Z axes for Contour Mode

DMC 1300 Error! Reference source not found. •• 10 - 184

CN (Binary F3)
FUNCTION: Configure

DESCRIPTION:

The CN command configures the polarity of the limit switches, the home switch and
the latch input.

ARGUMENTS: CN m,n,o where

m,n,o are integers with values 1 or -1.

 m = 1 Limit switches active high

 -1 Limit switches active low

n = 1 Home switch configured to drive motor in
forward direction when input is high. See
HM and FE commands.

 -1 Home switch configured to drive motor in
reverse direction when input is high. See
HM and FE commands

o = 1 * Latch input is active high

 -1 Latch input is active low

 *Note: The latch function will occur within 25usec only when used in active low mode.

USAGE: DEFAULTS:

While Moving Yes Default Value -1.-1.-1.-1

In a Program Yes Default Format 2.0

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"AL" on page 167 Arm latch

EXAMPLES:

CN 1,1 Sets limit and home switches to active high

CN,, -1 Sets input latch active low

Hint: To use step motors, connect the 20-pin connector on the DMC-1000 and install the SM
jumpers.

DMC 1300 Error! Reference source not found. •• 10 - 185

CP (Binary 9E)
FUNCTION: Clear Program

DESCRIPTION:

The CP command clears an application program from the EEPROM memory. This
command can take up to 10 seconds to complete.

ARGUMENTS: None

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program No Default Format -

Command Line Yes

Can be In terrogated No

Used as an Operand No

RELATED COMMANDS:

“BP” on page … Burn Program

DMC 1300 Error! Reference source not found. •• 10 - 186

CR (Binary E1)
FUNCTION: Circle

DESCRIPTION:

The CR command specifies a 2-dimensional arc segment of radius, r, starting at angle,
θ, and traversing over angle ∆θ. A positive ∆θ denotes counterclockwise
traverse, negative ∆θ denotes clockwise. The VE command must be used to
denote the end of the motion sequence after all CR and VP segments are
specified. The BG (Begin Sequence) command is used to start the motion
sequence. All parameters, r, θ, ∆θ, must be specified. Radius units are in
quadrature counts. θ and ∆θ have units of degrees. The parameter n is optional
and describes the vector speed that is attached to the motion segment.

ARGUMENTS: CR r,θ,∆θ < n where

r is an unsigned real number in the range 10 to 6000000 decimal (radius)

θ a signed number in the range 0 to +/-32000 decimal (starting angle in degrees)

∆θ is a signed real number in the range 0.0001 to +/-32000 decimal (angle in degrees)

n specifies a vector speed to be taken into effect at the execution of the vector
segment. n is an unsigned even integer between 0 and 8,000,000 for servo motor
operation and between 0 and 2,000,000 for stepper motors.

Note: The product r * ∆θ must be limited to +/-4.5 108

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used a s an Operand No

RELATED COMMANDS:

"VP" on page 291 Vector Position

"VS" on page 293 Vector Speed

"VD" on page 287 Vector Deceleration

"VA" on page 286 Vector Acceleration

"VM" on page 289 Vector Mode

"VE" on page 288 End Vector

"BG" on page 174 BGS - Begin Sequence

EXAMPLES:

VMXY Specify vector motion in the X and Y plane

VS 10000 Specify vector speed

CR 1000,0,360 Generate circle with radius of 1000 counts, start at 0 degrees and
complete one circle in counterclockwise direction.

CR 1000,0,360 < 40000 Generate circle with radius of 1000 counts, start at 0 degrees and
complete one circle in counterclockwise direction and use a vector
speed of 40000.

DMC 1300 Error! Reference source not found. •• 10 - 187

VE End Sequence

BGS Start motion

DMC 1300 Error! Reference source not found. •• 10 - 188

CS (Binary E2)
FUNCTION: Clear Sequence

DESCRIPTION:

The CS command will remove VP, CR or LI commands stored in a motion sequence.
Note, after a sequence has been run, the CS command is not necessary to put in
a new sequence. This command is useful when you have incorrectly specified
VP, CR or LI commands.

Note: This command is not valid for single axis controllers..

ARGUMENTS: None

DPRAM:

Similar to _CS, address 018 and 019 in the Dual Port RAM show which coordinated
move segment is currently being run.

USAGE: DEFAULTS:

While Moving No Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

When used as an operand, _CS contains the number of the segment in the sequence,
starting at zero. The operand _CS is valid in the Linear mode, LM, Vector mode,
VM, and contour mode, CM.

RELATED COMMANDS:

"CR" on page 185 Circular Interpolation Segment

"LI" on page 229 Linear Interpolation Segment

"LM" on page 231 Linear Interpolation Mode

"VM" on page 289 Vector Mode

"VP" on page 291 Vector Position

EXAMPLES:

#CLEAR Label

VP 1000,2000 Vector position

VP 4000,8000 Vector position

CS Clear vectors

VP 1000,5000 New vector

VP 8000,9000 New vector

VE End Sequence

BGS Begin sequence

EN End of Program

DMC 1300 Error! Reference source not found. •• 10 - 189

CW (No Binary)
FUNCTION: Copyright information / Data Adjustment bit on/off

DESCRIPTION:

The CW command has a dual usage. The CW command will return the copyright
information when the argument, n is 0. Otherwise, the CW command is used as a
communications enhancement for use by the Servo Design Kit software. When
turned on, the communication enhancement sets the MSB of unsolicited,
returned ASCII characters to 1. Unsolicited ASCII characters are those
characters which are returned from the controller without being directly queried
from the terminal. This is the case when a program has a command that requires
the controller to return a value or string.

ARGUMENTS: CW n.m where

n is a number, either 0,1, 2 or ?:

0 causes the controller to return the copyright information

1 causes the controller to set the MSB of unsolicited returned characters to 1

2 causes the controller to not set the MSB of unsolicited characters.

? returns the copyright information for the controller.

USAGE: DEFAULTS:

While Moving Yes Default Value 2, 0

In a Program Yes Default Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_CW contains the value of the data adjustment bit. 2 = off, 1 = on

Note: The CW command can cause garbled characters to be returned by the controller. The default
state of the controller is to disable the CW command, however, the Galil Servo Design Kit software
and terminal software may sometimes enable the CW command for internal usage. If the controller is
reset while the Galil software is running, the CW command could be reset to the default value which
would create difficulty for the software. It may be necessary to re-enable the CW command. The CW
command status can be stored in EEPROM.

DMC 1300 Error! Reference source not found. •• 10 - 190

DA (No Binary)
FUNCTION: Deallocate the Variables & Arrays

DESCRIPTION:

The DA command frees the array and/or variable memory space. In this command,
more than one array or variable can be specified for deallocation of memories.
Different arrays and variables are separated by comma when specified in one
command. The argument * deallocates all the variables, and *[0] deallocates all
the arrays.

ARGUMENTS: DA c[0],variable-name where

c[0] = Defined array name

variable-name = Defined variable name

* - Deallocates all the variables

*[0] - Deallocates all the arrays

DA ? returns the numb er of arrays available on the controller.

USAGE: DEFAULTS:

While Moving Yes Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_DA contains the total number of arrays available. For example, before any arrays
have been defined, the operand _DA on a standard DMC-1310 is 14. If an array
is defined, the operand _DA will return 13.

CONTROLLER NUMBER OF AVAILABLE ARRAYS

DMC-1310 thru DMC-1340 14

DMC-1350 thru DMC-1380 30

DMC-1310-MX thru DMC-1340-MX 30

RELATED COMMANDS:

"DM" on page 193 Dimension Array

EXAMPLES: ‘Cars’ and ‘Sales’ are arrays and ‘Total’ is a variable.

DM Cars[400],Sales[50] Dimension 2 arrays

Total=70 Assign 70 to the variable Total

DA Cars[0],Sales[0],Total Deallocate the 2 arrays & variables

DA*[0] Deallocate all arrays

DA *,*[0] Deallocate all variables and all arrays

Note: Since this command deallocates the spaces and compacts the array spaces in the memory, it is
possible that execution of this command may take longer time than 2 ms.

DMC 1300 Error! Reference source not found. •• 10 - 191

DC (Binary CD)
FUNCTION: Deceleration

DESCRIPTION:

The Deceleration command (DC) sets the linear deceleration rate of the motors for
independent moves such as PR, PA and JG moves. The parameters will be
rounded down to the nearest factor of 1024 and have units of counts per second
squared.

ARGUMENTS: DC x,y,z,w DCX=x DC a,b,c,d,e,f,g,h where

 x,y,z,w are unsigned numbers in the range 1024 to 67107840

"?" returns the deceleration value for the specified axes.

USAGE: DEFAULTS:

While Moving Yes* Default Value 256000

In a Program Yes Default Format 8.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

* When moving, the DC command can only be specified while in the jog mode.

OPERAND USAGE:

_DCx contains the deceleration rate for the specified axis.

RELATED COMMANDS:

"AC" on page 163 Acceleration

"PR" on page 247 Position Relative

"PA" on page 246 Position Absolute

"SP" on page 264 Speed

"JG" on page 220 Jog

"BG" on page 174 Begin

"IT" on page 219 Smoothing

EXAMPLES:

PR 10000 Specify position

AC 2000000 Specify acceleration rate

DC 1000000 Specify deceleration rate

SP 5000 Specify slew speed

BG Begin motion

Note: The DC command may be changed during the move in JG move, but not in PR or PA move.

DMC 1300 Error! Reference source not found. •• 10 - 192

DE (Binary C4)
FUNCTION: Dual (Auxiliary) Encoder Position

DESCRIPTION:

The DE x,y,z,w command defines the position of the auxiliary encoders. The auxiliary
encoders may be used for dual-loop applications.

The DE command defines the current motor position when used with stepper motors. DE ?

returns the commanded reference position of the motor. The units are in steps.

Note: The auxiliary encoders are not available for the stepper axis or for the axis where output
compare is active.

ARGUMENTS: DE x,y,z,w DEX=x DE a,b,c,d,e,f,g,h where

x,y,z,w are signed integers in the range -2147483647 to 2147483648 decimal

 "?" returns the position of the auxiliary encoders for the specified axes.

DPRAM:

DE can be read through the Axis Buffer for the corresponding axis, ie. DMC 1340 X-
axis is read at addresses 110 - 113 or DMC 1380 X-axis at addresses 210 - 213.

USAGE: DEFAULTS:

While Moving Yes Default Value 0,0,0,0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_DEx contains the current position of the specified auxiliary encoder.

EXAMPLES:

DE 0,100,200,400 Set the current auxiliary encoder position to 0,100,200,400 on X,Y,Z
and W axes

DE?,?,?,? Return auxiliary encoder positions

DUALX=_DEX Assign auxiliary encoder position of X-axis to the variable DUALX

Hint: Dual encoders are useful when you need an encoder on the motor and on the load. The encoder
on the load is typically the auxiliary encoder and is used to verify the true load position. Any error in
load position is used to correct the motor position.

DMC 1300 Error! Reference source not found. •• 10 - 193

DM (No Binary)
FUNCTION: Dimension

DESCRIPTION:

The DM command defines a single dimensional array with a name and n total
elements. The first element of the defined array starts with element number 0 and
the last element is at n-1.

ARGUMENTS: DM c[n] where

c is a name of up to eight characters, starting with an uppercase alphabetic character.
n specifies the size of the array (number of array elements).

 DM ? returns the number of array elements available.

USAGE: DEFAULTS:

While Moving Yes Default Value ---

In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_DM contains the available array space. For example, before any arrays have been
defined, the operand _DM on a standard DMC-1310 will return 1600. If an array
of 100 elements is defined, the operand _DM will return 1500.

CONTROLLER AMT. OF AVAILABLE ARRAY SPACE

DMC-1310 thru DMC-1340 1600 elements

DMC-1350 thru DMC-1380 8000 elements

DMC-1310-MX thru DMC-1340-MX 8000 elements

RELATED COMMANDS:

"DA" on page 190 Deallocate Array

EXAMPLES:

DM
Pets[5],Dogs[2],Cats[3]

Define dimension of arrays, pets with 5 elements; Dogs with 2
elements; Cats with 3 elements

DM Tests[1600] Define dimension of array Tests with 1600 elements

DMC 1300 Error! Reference source not found. •• 10 - 194

DP (Binary C3)
FUNCTION: Define Position

DESCRIPTION:

The DP command sets the current motor position and current command positions to a
user specified value. The units are in quadrature counts.

The DP command sets the commanded reference position for axes configured as steppers.

The units are in steps.

ARGUMENTS: DP x,y,z,w DPX=x DP a,b,c,d,e,f,g,h where

x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal.

"?" returns the current position of the motor for the specified axes.

USAGE: DEFAULTS:

While Moving No Default Value 0,0,0,0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_DPx contains the current position of the specified axis.

EXAMPLES:

DP 0,100,200,400 Sets the current position of the X-axis to 0, the Y-
axis to 100, the Z-axis to 200, and the W -axis to 400

DP ,-50000 Sets the current position of Y-axis to -50000. The
Y,Z and W axes remain unchanged.

DP ?,?,?,? Interrogate the position of X,Y,Z and W axis.

0000000,-0050000,0000200,0000400 Returns all the motor positions

DP ? Interrogate the position of X axis

0000000 Returns the X-axis motor position

Hint: The DP command is useful to redefine the absolute position. For example, you can manually
position the motor by hand using the Motor Off command, MO. Turn the servo motors back on with
SH and then use DP0 to redefine the new position as your absolute zero.

DMC 1300 Error! Reference source not found. •• 10 - 195

DT (No Binary)
FUNCTION: Delta Time

DESCRIPTION:

The DT command sets the time interval for Contouring Mode. Sending the DT
command once will set the time interval for all following contour data until a new
DT command is sent. 2n milliseconds is the time interval. Sending DT0 followed
by CD0 command terminates the Contour Mode.

ARGUMENTS: DT n where

n is an integer in the range 0 to 8. 0 terminates the Contour Mode. n=1 thru 8
specifies the time interval of 2n samples.

The default time interval is n=1 or 2 msec for a sample period of 1 msec.

DT ? returns the value for the time interval for contour mode.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

 In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_DT contains the value for the time interval for Contour Mode

RELATED COMMANDS:

"CM" on page 183 Contour Mode

"CD" on page 181 Contour Data

"W C" on page 295 Wait for next data

EXAMPLES:

DT 4 Specifies time interval to be 16 msec

DT 7 Specifies time interval to be 128 msec

#CONTOUR Begin

CMXY Enter Contour Mode

DT 4 Set time interval

CD 1000,2000 Specify data

W C Wait for contour

CD 2000,4000 New data

W C Wait

DT0 Stop contour

CD0 Exit Contour Mode

EN End

DMC 1300 Error! Reference source not found. •• 10 - 196

DV (Binary F4)
FUNCTION: Dual Velocity (Dual Loop)

DESCRIPTION:

The DV function changes the operation of the filter. It causes the KD (derivative)
term to operate on the dual encoder instead of the main encoder. This results in
improved stability in the cases where there is a backlash between the motor and
the main encoder, and where the dual encoder is mounted on the motor.

ARGUMENTS: DV x,y,z,w where

x,y,z,w may be 0 or 1. 0 disables the function. 1 enables the dual loop.

"?" returns a 0 if dual velocity mode is disabled and 1 if enabled for the specified axes.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

 In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

 OPERAND USAGE:

_DVx contains the state of dual velocity mode for specified axis. 0 = disabled, 1 =
enabled.

RELATED COMMANDS:

"KD" on page 223 Damping constant

"FV" on page 208 Velocity feedforward

EXAMPLES:

DV 1,1,1,1 Enables dual loop on all axes

DV 0 Disables DV on X axis

DV,,11 Enables dual loop on Z axis and WX axis. Other axes remain
unchanged.

DV 1,0,1,0 Enables dual loop on X and Z axis. Disables dual loop on Y and W
axis.

Hint: The DV command is useful in backlash and resonance compensation.

DMC 1300 Error! Reference source not found. •• 10 - 197

ED (Binary 98)
FUNCTION: Edit

DESCRIPTION:

Using Galil COMM 1300 Terminal Software: The ED command puts the controller
into the Edit subsystem. In the Edit subsystem, programs can be created,
changed, or destroyed. The commands in the Edit subsystem are:

 <cntrl>D Deletes a line

 <cntrl>I Inserts a line before the current one

 <cntrl>P Displays the previous line

 <cntrl>Q Exits the Edit subsystem

 <return> Saves a line

Using your own VME host system: Programs can be created or edited directly by
writing ED (Binary 98) to the command buffer. The current program line in the
buffer is displayed and can be modified using the following commands:

 (9A hex) Deletes a line

 (99 hex) Inserts a line before the current one

 (9B hex) Displays the previous line

 (9C hex) Exits the Edit subsystem

 (9D hex) Saves a line

USAGE:

Used as an Operand Yes

OPERAND USAGE:

 _ED contains the line number of the last line to have an error.

EXAMPLES:

ED

000 #START

001 PR 2000

002 BGX

003 SLKJ Bad line

004 EN

005 #CMDERR Routine which occurs upon a command error

006 V=_ED

007 MG "An error has occurred" {n}

008 MG "In line", V{F3.0}

009 ST

010 ZS0

011 EN

Hint: Remember to quit the Edit Mode prior to executing a program.

DMC 1300 Error! Reference source not found. •• 10 - 198

EI (Binary 8C)
FUNCTION: Enable Interrupts

DESCRIPTION:

The EI command enables interrupt conditions such as motion complete or excess
error. The conditions are selected by the parameter m where m is the bit mask for
the selected conditions as shown below. Prior to using interrupts, jumpers must
be placed on the DMC 1300 to select the interrupt priority (IRQ1 - IRQ7) and
vector placement (IAD1 - IAD4). The interrupt vector must also be set using the
third field of the EI command. An interrupt service routine must be incorporated
in your host program. Refer to section 4.3 for more details on the interrupt
settings.

ARGUMENTS: EI m,n,o where

EI 0,0 clears the interrupt mask

m is interrupt condition mask

n is input mask

0 is the vector numbered 8 - 255

DPRAM:

The settings for the EI mask, as well as the status of the interrupts, are available in the
Dual Port RAM. The interrupt status can be found at address 30 through 33 for
the DMC 1310/1340 and address 30 through 35 for the DMC 1350/1380. Below
are the addresses for the EI mask.

DMC 1310/1340

Address/Bit # Condition Address/Bit # Condition

034/Bit 7 Inputs (Use n for mask) 035/Bit 7 Contour interrupt

034/Bit 6 Command done 035/Bit 6 NA

034/Bit 5 Application program paused 035/Bit 5 NA

034/Bit 4 NA 035/Bit 4 NA

034/Bit 3 Watchdog timer 035/Bit 3 W axis motion complete

034/Bit 2 Limit switch occurred 035/Bit 2 Z axis motion complete

034/Bit 1 Excess position error 035/Bit 1 Y axis motion complete

034/Bit 0 All axes motion complete 035/Bit 0 X axis motion complete

DMC 1350/1380

Address/Bit # Condition Address/Bit # Condition

036/Bit 6 Command done 039/Bit 7 H axis motion complete

036/Bit 5 Application program stopped 039/Bit 6 G axis motion complete

036/Bit 4 NA 039/Bit 5 F axis motion complete

036/Bit 3 Watchdog timer 039/Bit 4 E axis motion complete

036/Bit 2 Limit switch occurred 039/Bit 3 W axis motion complete

DMC 1300 Error! Reference source not found. •• 10 - 199

036/Bit 1 Excess position error 039/Bit 2 Z axis motion complete

036/Bit 0 Inputs 039/Bit 1 Y axis motion complete

037/Bit 6 Contour interrupt 039/Bit 0 X axis motion complete

038/Bit 0 All axes motion complete

USAGE: DEFAULTS:

While Moving Yes Default Value 0

 In a Program Yes Default Format ---

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"UI" on page 285 User interrupt

EXAMPLES:

1. Specify interrupts for all axes motion complete and limit switch with a vector of 8
on a DMC 1340.

 Enable bits 0 and 2 of address 34.

 EI mask will reflect 2 byte value of 05 00 (hex)

 EI 1280,,8

2. Specify interrupt on Input 3 and contour interrupt with a vector of 10 on a DMC
1380.

 Enable bit 0 of address 36 and bit 6 of address 37 on m and bit 2 on n.

 EI mask will reflect 4 byte value of 01 00 40 00 (hex).

 EI 16793600,4,10

Note: The EI command on the DMC 1310/1340 will pass a 2 byte mask, while the EI command for the
DMC 1350/1380 will pass a 4 byte mask. Care should be taken to insure that the correct interrupt is
set by reading the corresponding interrupt mask register.

DMC 1300 Error! Reference source not found. •• 10 - 200

EN (Binary 84)
FUNCTION: End

DESCRIPTION:

The EN command is used to designate the end of a program or subroutine. If a
subroutine was called by the JS command, the EN command ends the subroutine
and returns program flow to the point just after the JS command.

The EN command is used to end the automatic subroutines #MCTIME, #CMDERR,
and #COMINT. When the EN command is used to terminate the #COMINT
communications interrupt subroutine, there are two arguments; the first
determines whether trippoints will be restored upon completion of the subroutine
and the second determines whether the communication interrupt will be re-
enabled.

ARGUMENTS: EN m, n where

 m=0 Return from #COMINT without restoring trippoint

 m=1 Return from subroutine and restore trippoint

 n=0 Return from #COMINT without restoring interrupt

 n=1 Return from communications interrupt #COMINT and restore interrupt

Note1: The default values for the arguments are 0. For example EN,1 and EN0,1 have
the same effect.

Note2: Trippoints cause a program to wait for a particular event. The AM command,
for example, waits for motion on all axes to complete. If the #COMINT
subroutine is executed due to a communication interrupt while the program is
waiting for a trippoint, the #COMINT can end by continuing to wait for the
trippoint as if nothing happened, or clear the trippoint and continue executing
the program at the command just after the trippoint. The EN arguments will
specify how the #COMINT routine handles trippoints.

Note3: Use the RE command to return from the interrupt handling subroutines
#LIMSWI and #POSERR. Use the RI command to return from the #ININT
subroutine.

USAGE: DEFAULTS:

While Moving Yes Default Value n=0, m=0

In a Program Yes Default Format

Command Line No

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

“RE” on page 252 Return from error subroutine

“RI” on page 253 Return from interrupt subroutine

DMC 1300 Error! Reference source not found. •• 10 - 201

EXAMPLES:

#A Program A

PR 500 Move X axis forward 500 counts

BGX Pause the program until the X axis completes the motion

AMX Move X axis forward 1000 counts

PR 1000 Set another Position Relative move

BGX Begin motion

EN End of Program

Note: Instead of EN, use the RE command to end the error subroutine and limit subroutine. Use the
RI command to end the input interrupt (ININT) subroutine.

DMC 1300 Error! Reference source not found. •• 10 - 202

ER (Binary 88)
FUNCTION: Error Limit

DESCRIPTION:

The ER command sets the magnitude of the X,Y,Z and W-axis position errors that will
trigger an error condition. When the limit is exceeded, the Error output will go
low (true). If the Off On Error (OE1) command is active, the motors will be
disabled. The units of ER are quadrature counts.

ARGUMENTS: ER x,y,z,w ERX=x ER a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range 1 to 32767

"?" returns the value of the Error limit for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 16384

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_ERx contains the value of the Error limit for the specified axis.

RELATED COMMANDS:

"OE" on page 243 Off-On Error

#POSERR Automatic Error Subroutine

EXAMPLES:

ER 200,300,400,600 Set the X-axis error limit to 200, the Y-axis error limit to 300, the Z-
axis error limit to 400, and the W -axis error limit to 600.

ER ,1000 Sets the Y-axis error limit to 1000, leave the X-axis error limit
unchanged.

ER ?,?,?,? Return X,Y,Z and W values

00200,00100,00400,006
00

ER ? Return X value

00200

V1=_ERX Assigns V1 value of ERX

V1= Returns V1

00200

Hint: The error limit specified by ER should be high enough as not to be reached during normal
operation. Examples of exceeding the error limit would be a mechanical jam, or a fault in a system
component such as encoder or amplifier.

DMC 1300 Error! Reference source not found. •• 10 - 203

ES (Binary EB)
FUNCTION: Ellipse Scale

DESCRIPTION:

The ES command divides the resolution of one of the axes in a vector mode. This
allows the generation of an ellipse instead of a circle.

The command has two parameters, m and n, (ES m,n), and it applies to the axes
designated by the VM command (VMXY, for example). When m>n, the
resolution of the first axis (X in the example), will be divided by the ratio m/n.
When m<n, the resolution of the second axis (Y in the example), will be divided
by n/m. The resolution change applies for the purpose of generating the VP and
CR commands. Note that this command results in one axis moving a distance
specified by the CR and VP commands while the other one moves a larger
distance.

ARGUMENTS: ES m,n where

m and n are positive integers in the range between 1 and 65,535.

USAGE: DEFAULTS:

While Moving Yes Default Value 1,1

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"VM" on page 289 Vector Mode

"CR" on page 186 Circle move

"VP" on page 291 Vector position

EXAMPLES:

VMXY;ES3,4 Divide Y resolution by 4/3

VMZX;ES2,3 Divide X resolution by 3/2

DMC 1300 Error! Reference source not found. •• 10 - 204

FA (Binary C1)
FUNCTION: Acceleration Feedforward

DESCRIPTION:

The FA command sets the acceleration feedforward coefficient, or returns the
previously set value. This coefficient, when scaled by the acceleration, adds a
torque bias voltage during the acceleration phase and subtracts the bias during
the deceleration phase of a motion.

Acceleration Feedforward Bias = FA ⋅ AC ⋅ 1.5 ⋅ 10-7

Deceleration Feedforward Bias = FA ⋅ DC ⋅ 1.5 ⋅ 10-7

The Feedforward Bias product is limited to 10 Volts. FA will only be operational
during independent moves.

ARGUMENTS: FA x,y,z,w where

x,y,z,w are unsigned numbers in the range 0 to 8191 decimal with a resolution of 0.25.

"?" returns the value of the feedforward acceleration coefficient for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 4.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_FAx contains the value of the feedforward acceleration coefficient for the specified
axis.

RELATED COMMANDS:

"FV" on page 208 Velocity feedforward

EXAMPLES:

AC 500000,1000000 Set feedforward coefficient to 10 for the X-axis

FA 10,15 and 15 for the Y-axis. The effective bias will be 0.75V for X and
2.25V for Y.

FA ?,? Return X and Y values

010,015

Note: If the feedforward coefficient is changed during a move, then the change will not take effect
until the next move.

DMC 1300 Error! Reference source not found. •• 10 - 205

FE (Binary D1)
FUNCTION: Find Edge

DESCRIPTION:

The FE command moves a motor until a transition is seen on the homing input for that
axis. The direction of motion depends on the initial state of the homing input
(use the CN command to configure the polarity of the home input). Once the
transition is detected, the motor decelerates to a stop.

This command is useful for creating your own homing sequences.

ARGUMENTS: FE XYZW FE ABCDEFGH where

X,Y,Z,W specify XYZ or W axis. No argument specifies all axes.

DPRAM:

Bit 4 of the Status #1 address in the axis buffer gives the status of the FE command.

USAGE: DEFAULTS:

While Moving No Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"FI" on page 206 Find Index

"HM" on page 212 Home

"BG" on page 174 Begin

"AC" on page 163 Acceleration Rate

"DC" on page 191 Deceleration Rate

"SP" on page 264 Speed for search

EXAMPLES:

FE Set find edge mode

BG Begin all axes

FEX Only find edge on X

BGX

FEY Only find edge on Y

BGY

FEZW Find edge on Z and W

BGZW

Hint: Find Edge only searches for a change in state on the Home Input. Use FI (Find Index) to
search for the encoder index. Use HM (Home) to search for both the Home input and the Index.
Remember to specify BG after each of these commands.

DMC 1300 Error! Reference source not found. •• 10 - 206

FI (Binary D6)
FUNCTION: Find Index

DESCRIPTION:

The FI and BG commands move the motor until an encoder index pulse is detected.
The controller looks for a transition from low to high. When the transition is
detected, motion stops and the position is defined as zero. To improve accuracy,
the speed during the search should be specified as 500 counts/s or less. The FI
command is useful in custom homing sequences. The direction of motion is
specified by the sign of the JG command.

ARGUMENTS: FI XYZW Where

 X,Y,Z,W specify XYZ or W axis. No argument specifies all axes.

USAGE: DEFAULTS:

While Moving No Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"FE" on page 205 Find Edge

"HM" o n page 212 Home

"BG" on page 174 Begin

"AC" on page 163 Acceleration Rate

"DC" on page 191 Deceleration Rate

"SP" on page 264 Search Speed

EXAMPLES:

#HOME Home Routine

JG 500 Set speed and forward direction

FIX Find index

BGX Begin motion

AMX After motion

MG "FOUND INDEX"

Hint: Find Index only searches for a change in state on the Index. Use FE to search for the Home.
Use HM (Home) to search for both the Home input and the Index. Remember to specify BG after each
of these commands.

DMC 1300 Error! Reference source not found. •• 10 - 207

FL (Binary C6)
FUNCTION: Forward Software Limit

DESCRIPTION:

The FL command sets the forward software position limit. If this limit is exceeded
during motion, motion on that axis will decelerate to a stop. Forward motion
beyond this limit is not permitted. The forward limit is activated at X+1, Y+1,
Z+1, W+1. The forward limit is disabled at 2147483647. The units are in counts.

ARGUMENTS: FL x,y,z,w FLX=x FL a,b,c,d,e,f,g,h where

x,y,z,w are signed integers in the range -2147483648 to 2147483647

2147483647 turns off the forward limit

"?" returns the value of the forward limit switch for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 2147483647

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_FLx contains the value of the forward limit switch for the specified axis.

RELATED COMMANDS:

"BL" on page 176 Reverse Limit

EXAMPLES:

FL 150000 Set forward limit to 150000 counts on the X-axis

#TEST Test Program

AC 1000000 Acceleration Rate

DC 1000000 Deceleration Rate

FL 15000 Forward Limit

JG 5000 Jog Forward

BGX Begin

AMX After Limit

TPX Tell Position

EN End

Hint: Galil controllers also provide hardware limits.

DMC 1300 Error! Reference source not found. •• 10 - 208

FV (Binary C5)
FUNCTION: Velocity Feedforward

DESCRIPTION:

The FV command sets the velocity feedforward coefficient, or returns the previously
set value. This coefficient, generates an output bias signal in proportions to the
commanded velocity.

Velocity feedforward bias = 1.22 ⋅ 10-6 ⋅ FV ⋅ Velocity [in ct/s].

For example, if FV=10 and the velocity is 200,000 count/s, the velocity feedforward
bias equals 2.44 volts.

ARGUMENTS: FV x,y,z,w FVX=x FV a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range 0 to 8191 decimal

"?" returns the feedforward velocity for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_FVx contains the feedforward velocity for the specified axis.

RELATED COMMANDS:

"FA" on page 204 Acceleration feedforward

EXAMPLES:

FV 10,20 Set feedforward coefficients to 10 and 20 for x

JG 30000,80000 and y respectively. This produces 0.366 volts for x and 1.95 volts
for y.

FV ?,? Return the x and y values.

010,020

DMC 1300 Error! Reference source not found. •• 10 - 209

GA (No Binary)
FUNCTION: Master Axis for Gearing

DESCRIPTION:

The GA command specifies the master axis for electronic gearing. Only one master
may be specified. The master may be the main encoder input, auxiliary encoder
input, or the commanded position of any axis. The master may also be the
commanded vector move in a coordinated motion of LM or VM type. When the
master is a simple axis, it may move in any direction and the slave follows. When
the master is a commanded vector move, the vector move is considered positive
and the slave will move forward if the gear ratio is positive, and backward if the
gear ratio is negative. The slave axes and ratios are specified with the GR
command and gearing is turned off by the command GR0.

ARGUMENTS: GA n where

n = X or Y or Z or W or A,B,C,D,E,F,G,H for main encoder as axis master

n = CX or CY or CZ or CW or CA,CB,CC,CD,CE,CF,CG,CH for command position as
master axis

n = S for vector motion as master

n = DX or DY or DZ or DW or DA,DB,DC,DD,DE,DF,DG,DH for auxiliary encoder as
master

USAGE: DEFAULTS:

While Moving No Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"GR" on page 210 Gear Ratio

EXAMPLES FOR DMC-1000 AND DMC-1500:

#GEAR Gear program

GAX Specify X axis as master

GR ,.5,-2.5 Specify Y and Z ratios

JG 5000 Specify master jog speed

BGX Begin motion

WT 10000 Wait 10000 msec

STX Stop

DMC 1300 Error! Reference source not found. •• 10 - 210

GN (Binary B8)
FUNCTION: Gain

DESCRIPTION:

The GN command sets the gain of the control loop or returns the previously set
value. It fits in the z-transform control equation as follows:

 D(z) = GN(z-ZR)/z

ARGUMENTS: GN x,y,z,w GNX=x GN a,b,c,d,e,f,g,h where

x,y,z,w are unsigned integers in the range 0 to 2047 decimal.

"?" returns the value of the gain for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 70

In a Program Yes Default Format 4

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_GNx contains the value of the gain for the specified axis, ‘x’.

RELATED COMMANDS:

"ZR" on page 298 Zero

"KI" on page 224 Integrator

"KP" on page 225 Proportional

"KD" on page 223 Derivative

EXAMPLES:

GN 12,14,15,20 Set X-axis gain to 12 Set Y-axis gain to 14 Set Z-axis gain to 15 Set
W -axis gain to 20

GN 6 Set X-axis gain to 6 Leave other gains unchanged

GN ,8 Set Y-axis gain to 8 Leave other gains unchanged

GN ?,?,?,? Returns X,Y,Z,W gains

0006,0008,0015,0020

GN ? Returns X gain

0006

GN ,? Returns Y gain

0008

DMC 1300 Error! Reference source not found. •• 10 - 211

GR (Binary D7)
FUNCTION: Gear Ratio

DESCRIPTION:

GR specifies the Gear Ratios for the geared axes in the electronic gearing mode. The
master axis is defined by the GAX or GAY or GAZ or GAW command. The gear
ratio may be different for each geared axis and range between +/-127.9999. The
slave axis will be geared to the actual position of the master. The master can go
in both directions. GR 0,0,0,0 disables gearing for each axis. A limit switch also
disables the gearing.

ARGUMENTS: GR x,y,z,w GRX=x GR a,b,c,d,e,f,g,h where

x,y,z,w are signed numbers in the range +/-127, with a fractional resolution of .0001.

0 disables gearing

"?" returns the value of the gear ratio for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 3.4

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_GRx contains the value of the gear ratio for the specified axis.

RELATED COMMANDS:

"GA" on page Page … Master Axis

EXAMPLES:

#GEAR

MOY Turn off servo to Y motor

GAY Specify master axis as Y

GR .25,,-5 Specify X and Z gear ratios

EN End program

Now when the Y motor is rotated by hand, the X will rotate at 1/4th the speed and Z
will rotate 5 times the speed in the opposite direction.

DMC 1300 Error! Reference source not found. •• 10 - 212

HM (Binary D0)
FUNCTION: Home

DESCRIPTION:

The HM command performs a three-stage homing sequence for servo systems and
two stage sequence for stepper motor operation.

For servo motor operation:

The first stage consists of the motor moving at the user programmed speed until detecting a
transition on the homing input for that axis. The direction for this first stage is determined
by the initial state of the Homing Input. Once the homing input changes state, the motor
decelerates to a stop. The state of the homing input can be configured using the CN
command.

The second stage consists of the motor changing directions and slowly approaching
the transition again. When the transition is detected, the motor is stopped
instantaneously..

The third stage consists of the motor slowly moving forward until it detects an index
pulse from the encoder. It stops at this point and defines it as position 0.

For stepper mode operation, the sequence consists of the first two stages. The frequency of

the motion in stage 2 is 256 cts/ sec.

ARGUMENTS: None

DPRAM:

Bits 1, 2 and 3 of the Status #1 address in the Axis Buffer gives the state of the HM
command. Bit 1 shows if home has been found, bit 2 shows if the 1st phase of the
homing routine has completed, and bit 3 shows if the 2nd phase of the homing
routine has completed.

USAGE: DEFAULTS:

While Moving No Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_HMx contains the state of the home switch for the specified axis

RELATED COMMANDS:

"CN" on page 184 Configure Home

"FI" on page 206 Find Index Only

"FE" on page 205 Find Home Only

DMC 1300 Error! Reference source not found. •• 10 - 213

EXAMPLES:

HM Set Homing Mode for all axes

BG Home all axes

BGX Home only the X-axis

BGY Home only the Y-axis

BGZ Home only the Z -axis

BGW Home only the W -axis

Hint: You can create your own custom homing sequence by using the FE (Find Home Sensor only)
and FI (Find Index only) commands.

DMC 1300 Error! Reference source not found. •• 10 - 214

HX (Binary 97)
FUNCTION: Halt Execution

DESCRIPTION:

The HX command halts the execution of any of the four programs that may be
running independently in multitasking. The parameter n specifies the program to
be halted.

ARGUMENTS: HXn where

 n is an integer in the range of 0 to 3 which indicates the thread number.

USAGE: DEFAULTS:

While Moving Yes Default Value n = 0

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

When used as an operand, _HXn contains the running status of thread n with:

 0 Thread not running

 1 Thread is running

 2 Thread has stopped at trippoint

RELATED COMMANDS:

"XQ" on page 297 Execute program

EXAMPLES:

XQ #A Execute program #A, thread zero

XQ #B,3 Execute program #B, thread three

HX0 Halt thread zero

HX3 Halt thread three

DMC 1300 Error! Reference source not found. •• 10 - 215

II (Binary II)
FUNCTION: Input Interrupt

DESCRIPTION:

The II command enables the interrupt function for the specified inputs. m specifies
the beginning input and n specifies the final input in the range. For example, II
2,4 specifies interrupts occurring for Input 2, Input 3 and Input 4. m=0 disables
the Input Interrupts. If only the m parameter is given, only that input will
generate an interrupt.

The parameter o is an interrupt mask for all eight inputs. If m and n are unused, o
contains a number with the mask. A 1 designates that input to be enabled for an
interrupt.

Example: II,,5 enables inputs 1 and 3

If any of the specified inputs go low during program execution, the program will jump
to the subroutine with label #ININT. Any trippoints set by the program will be
cleared but can be re-enabled by the proper termination of the interrupt
subroutine using RI. The RI command is used to return from the #ININT routine.

ARGUMENTS: II m,n,o where

 m is an integer in the range 0 to 8 decimal

 n is an integer in the range 1 to 8 decimal

 o is an integer in the range 0 to 255 decimal

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 3.0 (mask only)

Command Line No

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"RI" on page 253 Return from Interrupt

#ININT Interrupt Subroutine

"AI" on page 166 Trippoint for input

EXAMPLES:

#A Program A

II 1 Specify interrupt on input 1

JG 5000;BGX Specify jog and begin motion on X axis

#LOOP;JP #LOOP Loop

EN End Program

#ININT Interrupt subroutine

STX;MG "INTERRUPT" Stop X, print message

AMX After stopped

#CLEAR;JP#CLEAR,@IN[1]=0 Check for interrupt clear

DMC 1300 Error! Reference source not found. •• 10 - 216

BGX Begin motion

RI0 Return to main program, don't re -enable trippoints

DMC 1300 Error! Reference source not found. •• 10 - 217

IL (Binary B5)
FUNCTION: Integrator Limit

DESCRIPTION:

The IL command limits the effect of the integrator function in the filter to a certain
voltage. For example, IL 2 limits the output of the integrator of the X-axis to the
+/-2 Volt range.

A negative parameter also freezes the effect of the integrator during the move. For
example, IL -3 limits the integrator output to +/-3V. If, at the start of the motion,
the integrator output is 1.6 Volts, that level will be maintained through the move.
Note, however, that the KD and KP terms remain active in any case.

ARGUMENTS: IL x,y,z,w ILX=x IL a,b,c,d,e,f,g,h where

x,y,z,w are numbers in the range -9.9988 to 9.9988 Volts with a resolution of 0.0003.

"?" returns the value of the integrator limit for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 9.9988

In a Program Yes Default Format 1.4

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

USAGE:

_ILx contains the value of the integrator limit for the specified axis.

RELATED COMMANDS:

"KI" on page 224 Integrator

EXAMPLES:

KI 2,3,5,8 Integrator constants

IL 3,2,7,2 Integrator limits

IL ? Returns the X-axis limit

3.0000

DMC 1300 Error! Reference source not found. •• 10 - 218

IP (Binary CF)
FUNCTION: Increment Position

DESCRIPTION:

The IP command allows for a change in the command position while the motor is
moving. This command does not require a BG. The command has three effects
depending on the motion being executed. The units of this are quadrature.

Case 1: Motor is standing still

An IP x,y,z,w command is equivalent to a PR x,y,z,w and BG command. The motor will
move to the specified position at the requested slew speed and acceleration.

Case 2: Motor is moving towards specified position

An IP x,y,z,w command will cause the motor to move to a new position target, which
is the old target plus x,y,z,w. x,y,z,w must be in the same direction as the existing
motion.

Case 3: Motor is in the Jog Mode

An IP x,y,z,w command will cause the motor to instantly try to servo to a position
x,y,z,w from the present instantaneous position. The SP and AC parameters have
no effect. This command is useful when synchronizing 2 axes in which one of
the axis' speed is indeterminate due to a variable diameter pulley.

Warning: When the mode is in jog mode, an IP will create an instantaneous position
error. In this mode, the IP should only be used to make incremental position
movements.

ARGUMENTS: IP x,y,z,w IPX=x IP a,b,c,d,e,f,g,h where

x,y,z,w are signed numbers in the range -2147483648 to 2147483647 decimal.

"?" returns the current position of the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value

In a Program Yes Default Format 7.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand No

EXAMPLES:

IP 50 50 counts with set acceleration and speed

#CORRECT Label

AC 100000 Set acceleration

JG 10000;BGX Jog at 10000 counts/sec rate

WT 1000 Wait 1000 msec

IP 10 Move the motor 10 counts instantaneously

STX Stop Motion

DMC 1300 Error! Reference source not found. •• 10 - 219

IT (Binary BC)
FUNCTION: Independent Time Constant - Smoothing Function

DESCRIPTION:

The IT command filters the acceleration and deceleration functions in independent
moves of JG, PR, PA type to produce a smooth velocity profile. The resulting
profile, known as S-curve, has continuous acceleration and results in reduced
mechanical vibrations. IT sets the bandwidth of the filter where 1 means no
filtering and 0.004 means maximum filtering. Note that the filtering results in
longer motion time.

ARGUMENTS: IT x,y,z,w ITX=x IT a,b,c,d,e,f,g,h where

x,y,z,w are positive numbers in the range between 0.004 and 1.0 with a resolution of
1/256.

"?" returns the value of the independent time constant for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value

In a Program Yes Default Format 7.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_ITx contains the value of the independent time constant for the specified ‘x’ axis.

RELATED COMMANDS:

"VT" on page 294 Vector Time Constant for smoothing vector moves

EXAMPLES:

IT 0.8, 0.6, 0.9, 0.1 Set independent time constants for x,y,z,w axes

IT ? Return independent time constant for X-axis

0.8

DMC 1300 Error! Reference source not found. •• 10 - 220

JG (Binary CB)
FUNCTION: Jog

DESCRIPTION:

The JG command sets the jog mode. The parameters following the JG set the slew
speed of the axes. Use of the question mark returns the previously entered value
or default value. The units of this are counts/second.

ARGUMENTS: JG x,y,z,w JGX=x JG a,b,c,d,e,f,g,h where

x,y,z,w are signed numbers in the range 0 to +/-12,000,000 decimal

For stepper motor operation, the maximum value is 2,000,000 steps/ second.

"?" returns the absolute value of the jog speed for the specified axis.

DPRAM:

A 0 at bit 6 of the Status #1 address in the Axis Buffer indicates the axis is in jog
mode. Bit 7 of the Status #2 address will indicate the direction of the jog.

USAGE: DEFAULTS:

While Moving Yes Default Value 16385

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

 _JGx contains the absolute value of the jog speed for the specified axis.

RELATED COMMANDS:

"BG" on page 174 Begin

"ST" on page 265 Stop

"AC" on page 163 Acceleration

"DC" on page 191 Deceleration

"IP" on page 218 Increment Position

"TV" on page 283 Tell Velocity

EXAMPLES:

JG 100,500,2000,5000 Set for jog mode with a slew speed of 100 counts/sec for the X-axis,
500 counts/sec for the Y-axis, 2000 counts/sec for the Z -axis, and
5000 counts/sec for W -axis.

BG Begin Motion

JG ,,-2000 Change the Z -axis to slew in the negative direction at -2000
counts/sec.

DMC 1300 Error! Reference source not found. •• 10 - 221

JP (No Binary)
FUNCTION: Jump to Program Location

DESCRIPTION:

The JP command causes a jump to a program location on a specified condition. The
program location may be any program line number or label. The condition is a
conditional statement which uses a logical operator such as equal to or less than.
A jump is taken if the specified condition is true.

ARGUMENTS: JP location,condition where

location is a program line number or label

 condition is a conditional statement using a logical operator

The logical operators are:

 < less than

 > greater than

 = equal to

 <= less than or equal to

 >= greater than or equal to

 <> not equal to

USAGE: DEFAULTS:

While Moving Yes Default Value

In a Program Yes Default Format

Command Line No

Can be Interrogated No

Used as an Operand No

EXAMPLES:

JP #POS1,V1<5 Jump to label #POS1 if variable V1 is less than 5

JP #A,V7*V8=0 Jump to #A if V7 times V8 equals 0

JP #B Jump to #B (no condition)

Hint: JP is similar to an IF, THEN command. Text to the right of the comma is the condition that
must be met for a jump to occur. The destination is the specified label before the comma.

DMC 1300 Error! Reference source not found. •• 10 - 222

JS (No Binary)
FUNCTION: Jump to Subroutine

DESCRIPTION:

The JS command will change the sequential order of execution of commands in a
program. If the jump is taken, program execution will continue at the line
specified by the destination parameter, which can be either a line number or label.
The line number of the JS command is saved and after the next EN command is
encountered (End of subroutine), program execution will continue with the
instruction following the JS command. There can be a JS command within a
subroutine.

Note: Subroutines may be nested 16 deep in the standard DMC-1300 controller.

A jump is taken if the specified condition is true. Conditions are tested with logical
operators. The logical operators are:

< less than or equal to <= less than or equal to

> greater than >= greater than or equal to

= equal to <> not equal

ARGUMENTS: JS destination, condition where

destination is a line number or label

condition is a conditional statement using a logical operator

USAGE: DEFAULTS:

While Moving Yes Default Value

In a Program Yes Default Format

Command Line No

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"EN" on page 200 End

EXAMPLES:

JS #SQUARE,V1<5 Jump to subroutine #SQUARE if V1 is less than 5

JS #LOOP,V1<>0 Jump to #LOOP if V1 is not equal to 0

JS #A Jump to subroutine # A (no condition)

DMC 1300 Error! Reference source not found. •• 10 - 223

KD (Binary B7)
FUNCTION: Derivative Constant

DESCRIPTION:

KD designates the derivative constant in the controller filter. The filter transfer
function is

 D(z) = 4⋅ KP + 4⋅ KD(z-1)/z + KIz/2 (z-1)

 For further details on the filter see the section Theory of Operation.

ARGUMENTS: KD x,y,z,w KDX=x KD a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range 0 to 4095.875 with a resolution of 1/8.

"?" returns the value of the derivative constant for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 64

In a Program Yes Default Format 4.2

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_KDx contains the value of the derivative constant for the specified axis.

RELATED COMMANDS:

"KI" on page 224 Integrator

"KP" on page 225 Proportional

EXAMPLES:

KD 100,200,300,400.25 Specify KD

KD ?,?,?,? Return KD

0100.00,0200.00,0300.00,0400.25

DMC 1300 Error! Reference source not found. •• 10 - 224

KI (Binary BA)
FUNCTION: Integrator

DESCRIPTION:

The KI command sets the integral gain of the control loop. It fits in the control
equation as follows:

 D(z) = 4⋅ KP + 4⋅ KD(z-1)/z + KI z/2(z-1)

 The integrator term will reduce the position error at rest to zero.

ARGUMENTS: KI x,y,z,w KIX=x KI a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range 0 to 2047.875 with a resolution of 1/8.

"?" returns the value of the derivative constant for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 4.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_KIx contains the value of the derivative constant for the specified axis.

RELATED COMMANDS:

"KP" on page 225 Proportional Constant

"KI" on page 224 Integrator

"IL" on page 217 Integrator Limit

EXAMPLES:

KI 12,14,16,20 Specify x,y,z,w-axis integral

KI 7 Specify x-axis only

KI ,,8 Specify z-axis only

KI ?,?,?,? Return X,Y,Z,W

0007,0014,0008,0020 KI values

DMC 1300 Error! Reference source not found. •• 10 - 225

KP (Binary B6)
FUNCTION: Proportional Constant

DESCRIPTION:

KP designates the proportional constant in the controller filter. The filter transfer
function is

 D(z) = 4⋅ KP + 4⋅ KD(z-1)/z + KI z/2(z-1)

For further details see the section Theory of Operation.

ARGUMENTS: KP x,y,z,w KPX=x KP a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range 0 to 1023.875 with a resolution of 1/8.

"?" returns the value of the proportional constant for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 6

In a Program Yes Default Format 4.2

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_KPx contains the value of the proportional constant for the specified axis.

RELATED COMMANDS:

"KP" on page 225 Proportional Constant

"KI" on page 224 Integrator

"IL" on page 217 Integrator Limit

DMC 1300 Error! Reference source not found. •• 10 - 226

KS (Binary ?)
FUNCTION: Step Motor Smoothing

DESCRIPTION:

The KS parameter smoothes the frequency of the step motor pulses. Larger values of KS

provide greater smoothness. This parameter will also increase the motion time by 3KS
sampling periods. KS adds a single pole low pass filter onto the output of the motion
profiler. This function smoothes out the generation of step pulses and is most useful
when operating in full or half step mode.

Note: KS will delay the step output.

ARGUMENTS: KS x,y,z,w KSX=x KS a,b,c,d,e,f,g,h where

x,y,z,w are positive integers in the range between .5 and 8 with a resolution of 1/32.

"?" returns the value of the derivative constant for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 2

In a Program Yes Default Format 4.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_KSx contains the value of the derivative constant for the specified axis.

RELATED COMMANDS:

“MT” on page 221 Motor Type

EXAMPLES:

KS 2, 4 , 8 Specify x,y,z axes

KS 5 Specify x-axis only

KS ,,15 Specify z-axis only

Hint: KS is valid for step motor only.

DMC 1300 Error! Reference source not found. •• 10 - 227

LE (Binary E6)
FUNCTION: Linear Interpolation End

DESCRIPTION:

LE signifies the end of a linear interpolation sequence. It follows the last LI
specification in a linear sequence. After the LE specification, the controller
issues commands to decelerate the motors to a stop. The VE command is
interchangeable with the LE command.

ARGUMENTS:

LE? returns the length of the vector in counts.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_LE contains the length of the vector in counts.

RELATED COMMANDS:

"LI" on page 229 Linear Distance

"BG" on page 174 BGS - Begin Sequence

"LM" on page 231 Linear Interpolation Mode

"VS" on page 293 Vector Speed

"VA" on page 286 Vector Acceleration

"VD" on page 287 Vector Deceleration

EXAMPLES:

LM ZW Specify linear interpolation mode

LI ,,100,200 Specify linear distance

LE End linear move

BGS Begin motion

DMC 1300 Error! Reference source not found. •• 10 - 228

_LF* (No Binary)
FUNCTION: Forward Limit Switch Operand (Keyword)

DESCRIPTION:

The _LF operand contains the state of the forward limit switch for the specified axis.

_LFx where x is the specified axis.

DPRAM:

Bit 3 of the Switches address in the Axis Buffer will tell the status of the forward limit
switch on an axis, ie. bit 3 of address 105 for the DMC 1340 X-axis forward limit
switch and bit 3 of address 205 for the DMC 1380 X-axis forward limit switch.

EXAMPLES:

MG _LF X Display the status of the X axis forward limit switch

* This is an Operand - Not a command.

DMC 1300 Error! Reference source not found. •• 10 - 229

LI (Binary E9)
FUNCTION: Linear Interpolation Distance

DESCRIPTION:

The LI x,y,z,w command specifies the incremental distance of travel for each axis in
the Linear Interpolation (LM) mode. LI parameters are relative distances given
with respect to the current axis positions. Up to 511 LI specifications may be
given ahead of the Begin Sequence (BGS) command. Additional LI commands
may be sent during motion when the controller sequence buffer frees additional
spaces for new vector segments. The Linear End (LE) command must be given
after the last LI specification in a sequence. This command tells the controller to
decelerate to a stop at the last LI command. It is the responsibility of the user to
keep enough LI segments in the controller's sequence buffer to ensure
continuous motion.

LM ? returns the available spaces for LI segments that can be sent to the buffer. 511
returned means the buffer is empty and 511 LI segments can be sent. A zero
means the buffer is full and no additional segments can be sent. It should be
noted that the controller computes the vector speed based on the axes specified
in the LM mode. For example, LM XYZ designates linear interpolation for the
X,Y and Z axes. The speed of these axes will be computed from
VS

2
=XS

2
+YS

2
+ZS

2
 where XS, YS and ZS are the speed of the X,Y and Z axes.

If the LI command specifies only X and Y, the speed of Z will still be used in the
vector calculations. The controller always uses the axis specifications from LM,
not LI, to compute the speed. The parameter n is optional and can be used to
define the vector speed that is attached to the motion segment.

ARGUMENTS: LI x,y,z,w < n LI a,b,c,d,e,f,g,h where

x,y,z,w and a,b,c,d,e,f,h are signed integers in the range -8,388,607 to 8,388,607 and
represent incremental move distance

n specifies a vector speed to be taken into effect at the execution of the linear
segment. n is an unsigned even integer between 0 and 8,000,000 for servo motor
operation and between 0 and 2,000,000 for stepper motors.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

DMC 1300 Error! Reference source not found. •• 10 - 230

RELATED COMMANDS:

"LE" on page 227 Linear end

"BG" on page 174 BGS - Begin sequence

"LM" on page 231 Linear Interpolation Mode

"CS" on page 188 Clear Sequence

"VS" on page 293 Vector Speed

"VA" on page 286 Vector Acceleration

"VD" on page 287 Vector Deceleration

EXAMPLES:

LM XYZ Specify linear interpolation mode

LI 1000,2000,3000 Specify distance

LE Last segment

BGS Begin sequence

DMC 1300 Error! Reference source not found. •• 10 - 231

LM (Binary E8)
FUNCTION: Linear Interpolation Mode

DESCRIPTION:

The LM XYZW command specifies the linear interpolation mode where XYZW
denote the axes for linear interpolation. Any set of 1,2,3 or 4 axes may be used
for linear interpolation. LI x,y,z,w commands are used to specify the travel
distances for linear interpolation. The LE command specifies the end of the linear
interpolation sequence. Several LI commands may be given as long as the
controller sequence buffer has room for additional segments. Once the LM
command has been given, it does not need to be given again unless the VM
command has been used.

It should be noted that the controller computes the vector speed based on the axes
specified in the LM mode. For example, LM XYZ designates linear interpolation
for the X,Y and Z axes. The speed of these axes will be computed from
VS

2
=XS

2
+YS

2
+ZS

2
, where XS, YS and ZS are the speed of the X,Y and Z axes.

If the LI command specifies only X and Y, the speed of Z will still be used in the
vector calculations. The controller always uses the axis specifications from LM,
not LI, to compute the speed.

ARGUMENTS: LM XYZW LM ABCDEFGH where

XYZW denote X,Y,Z or W axes

LM? will return the number of spaces available in the sequence buffer for additional
LI commands.

DPRAM:

Bit 0 of the Status #1 address in the Axis Buffer indicates if the controller is in the
coordinated motion mode.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_LM contains the number of spaces available in the sequence buffer for additional LI
commands

RELATED COMMANDS:

"LE" on page 227 Linear end

"LI" on page 229 Linear Distance

"VA" on page 286 Vector acceleration

"VS" on page 293 Vector Speed

"VD" on page 287 Vector deceleration

"AV" on page 173 Vector distance

"CS" on page 188 _CS - Sequence counter

DMC 1300 Error! Reference source not found. •• 10 - 232

EXAMPLES:

LM XYZW Specify linear interpolation mode

VS 10000; VA 100000;VD 1000000 Specify vector speed, acceleration and deceleration

LI 100,200,300,400 Specify linear distance

LI 200,300,400,500 Specify linear distance

LE; BGS Last vector, then begin motion

DMC 1300 Error! Reference source not found. •• 10 - 233

_LR* (Binary ?)
FUNCTION: Reverse Limit Switch Operand (Keyword)

DESCRIPTION:

*The _LR operand contains the state of the reverse limit switch for the specified axis.

_LRx where x is the specified axis.

DPRAM:

Bit 2 of the Switches address in the Axis Buffer will tell the status of the reverse limit
switch on an axis, ie. bit 2 of address 105 for the DMC 1340 X-axis reverse limit
switch and bit 2 of address 205 for the DMC 1380 X-axis reverse limit switch.

EXAMPLES:

MG _LR X Display the status of the X axis reverse limit switch

*Note: This is an Operand - Not a command

DMC 1300 Error! Reference source not found. •• 10 - 234

MC (Binary D8)
FUNCTION: Motion Complete - "In Position"

DESCRIPTION:

The MC command is a trippoint used to control the timing of events. This command
will hold up execution of the following commands until the current move on the
specified axis or axes is completed and the encoder reaches or passes the
specified position. Any combination of axes or a motion sequence may be
specified with the MC command. For example, MC XY waits for motion on both
the X and Y axis to be complete. MC with no parameter specifies that motion on
all axes is complete. TW x,y,z,w sets the timeout to declare an error if the
encoder is not in position within the specified time. If a timeout occurs, the
trippoint will clear and the stopcode will be set to 99. An application program
will jump to the special label #MCTIME.

When used in stepper mode, the controller will hold up execution of the proceeding commands
until the controller has generated the same number of steps as specified in the commanded
position. The actual number of steps that have been generated can be monitored by using the
interrogation command TD. Note: The MC command is useful when operating with stepper
motors since the step pulses can be delayed from the commanded position due to the stepper
motor smoothing function, KS.

ARGUMENTS: MC XYZW MC ABCDEFGH where

 X,Y,Z,W specifies X,Y,Z or W axis or sequence. No argument specifies that motion on all
axes is complete.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"BG" on page 174 Begin

"AM" on page 168 After Move

"TW " on page 284 Timeout

EXAMPLES:

#MOVE Program MOVE

PR 5000,5000,5000,5000 Position relative moves

BG X Start the X-axis

MC X After the move is complete on X,

BG Y Start the Y-axis

MC Y After the move is complete on Y,

BG Z Start the Z -axis

MC Z After the move is complete on Z

DMC 1300 Error! Reference source not found. •• 10 - 235

BG W Start the W -axis

MC W After the move is complete on W

EN End of Program

#F;DP 0,0,0,0 Program F Position

PR 5000,6000,7000,8000 relative moves

BG Start X,Y,Z and W axes

MC After motion complete on all axes

MG "DONE"; TP Print message

 EN End of Program

Hint: MC can be used to verify that the actual motion has been completed.

DMC 1300 Error! Reference source not found. •• 10 - 236

MF (Binary D9)
FUNCTION Forward Motion to Position

DESCRIPTION:

The MF command is a trippoint used to control the timing of events. This command
will hold up the execution of the following command until the specified motor
moves forward and crosses the position specified. The units of the command
are in quadrature counts. Only one axis may be specified at a time. The MF
command can also be used when the encoder is the master and not under servo
control.

ARGUMENTS: MFx or MF,y or MF,,z or MF,,,w MFX=X MF abcdefgh where

x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"AD" on page 164 Trippoint for after Relative Distances

"AP" on page 169 Trippoint for after Absolute Position

EXAMPLES:

#TEST Program B

DP0 Define zero

JG 1000 Jog mode (speed of 1000 counts/sec)

BG X Begin move

MF 2000 After passing the position 2000

V1=_TPX Assign V1 X position

MG "Position is", V1=
ST

Print Message Stop

EN End of Program

Hint: The accuracy of the MF command is the number of counts that occur in 2 msec. Multiply the
speed by 2 msec to obtain the maximum error. MF tests for absolute position. The MF command can
also be used when the specified motor is driven independently by an external device.

DMC 1300 Error! Reference source not found. •• 10 - 237

MG (Binary 81)
FUNCTION: Message

DESCRIPTION:

The MG command sends data to the host. This can be used to alert an operator, send
instructions or return a variable value. The command can send one ASCII string
and one binary value. If the command is sent

ARGUMENTS: MG "m", V where

"m" is a text message including letters, numbers, symbols or <ctrl>G (up to 31
characters).

V is a variable name or array element

Note: Multiple text, variables, and ASCII characters may be used, each must be
separated by a comma.

Note: The order of arguments is not important.

DPRAM:

The MG command submitted through the command buffer can be read in the
response buffer, with the ASCII string being read in the Y-axis data address and
any binary data being read in the X-axis data address. When the MG command
is submitted through the program buffer, the response can be read in the program
buffer, with the ASCII string read at the Y-axis data address and the binary data
being read in the X-axis data address. Data is displayed as 4 bytes of integer
with 2 bytes of fraction.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format Variable Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

EXAMPLES:

Case 1: Message command displays ASCII strings

 MG "Good Morning" Displays the string Good Morning

Case 2: Message command displays variables or arrays

 MG "The Answer is", Total Displays the string with the content of variable
TOTAL in local format of 4 bytes before and 2 bytes after the decimal point.

DMC 1300 Error! Reference source not found. •• 10 - 238

MO (Binary BD)
FUNCTION: Motor Off

DESCRIPTION:

The MO command shuts off the control algorithm. The controller will continue to
monitor the motor position. To turn the motor back on use the Servo Here
command (SH).

ARGUMENTS: MO XYZW MO ABCDEFGH where

XYZW specify the axes to be turned off.

"?" returns the state of the motor for the specified axis.

DPRAM:

Bit 0 of the Status #2 address of the Axis Buffer will show a 0 if the servo is in the
motor off state.

USAGE: DEFAULTS:

While Moving No Default Value 0

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_MOx contains the state of the motor for the specified axis.

RELATED COMMANDS:

"SH" on page 263 Servo Here

EXAMPLES:

MO Turn off all motors

MOX Turn off the X motor. Leave the other motors unchanged

MOY Turn off the Y motor. Leave the other motors unchanged

MOZX Turn off the Z and X motors. Leave the other motors unchanged

SH Turn all motors on

Bob=_MOX Sets Bob equal to the X-axis servo status

Bob= Return value of Bob. If 1, in motor off mode, If 0, in servo mode

Hint: The MO command is useful for positioning the motors by hand. Turn them back on with the SH
command.

DMC 1300 Error! Reference source not found. •• 10 - 239

MR (No Binary)
FUNCTION: Reverse Motion to Position

DESCRIPTION:

The MR command is a trippoint used to control the timing of events. This command
will hold up the execution of the following command until the specified motor
moves backward and crosses the position specified. The units of the command
are in quadrature counts. Only one axis may be specified at a time. The MR
command can also be used when the encoder is the master and not under servo
control.

ARGUMENTS: MRx or MR,y or MR,,z or MR,,,w MRX=X MR abcdefgh where

x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal

USAGE: DEFAULTS:

While Moving No Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"AD" on page 164 Trippoint for Relative Distances

"AP" on page 169 Trippoint for after Absolute Position

EXAMPLES:

#TEST Program B

DP0 Define zero

JG 1000 Jog mode (speed of 1000 counts/sec)

BG X Begin move

MR -3000 After passing the position -3000

V1=_TPX Assign V1 X position

MG "Position is", V1= ST Print Message Stop

EN End of Program

Hint: The accuracy of the MR command is the number of counts that occur in 2 msec. Multiply the
speed by 2 msec to obtain the maximum error. MR tests for absolute position. The MR command
can also be used when the specified motor is driven independently by an external device.

DMC 1300 Error! Reference source not found. •• 10 - 240

MT (Binary F5)
FUNCTION: Motor Type

DESCRIPTION:

The MT command selects the type of the motor and the polarity of the drive signal. Motor
types include standard servo motors which require a voltage in the range of +/- 10 Volts,
and step motors which require pulse and direction signals. The polarity reversal inverts
the analog signals for servo motors, and inverts logic level of the pulse train, for step
motors.

ARGUMENTS: MT x,y,z,w MTX=x MT a,b,c,d,e,f,g,h where

 x,y,z,w are integers with

 1 - Servo motor

 -1 - Servo motor reversed polarity

 2 - Step motor with active low step pulses

 -2 - Step motor with active high step pulses

"?" returns the value of the motor type for the specified axis.

DPRAM:

Bit 0 of the Switches address in the Axis Buffer will indicate the stepper motor
jumpers are installed for the axis. For example, a 1 at bit 0 of address 105 on a
DMC 1340 indicates the SM jumper is installed for the X-axis.

USAGE: DEFAULTS:

While Moving No Default Value 1,1,1,1

In a Program Yes Default Format 1

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_MTx contains the value of the motor type for the specified axis.

RELATED COMMANDS:

"CN" on page 184 Configure step pulse width

EXAMPLES:

MT 1,-1,2,2 Configure x as servo, y as reverse servo, z and w as steppers

MT ?,? Interrogate motor type

V=_MTX Assign motor type to variable

Hint: When using step motors, you must install the SM jumper for each axis. The step and direction
signals are accessed through the J4 20-pin connector on the controller.

DMC 1300 Error! Reference source not found. •• 10 - 241

NO (No Binary)
FUNCTION: No Operation

DESCRIPTION:

The NO command performs no action in a sequence, but can be used as a comment in
a program. This helps to document a program.

ARGUMENTS: NO m where

m is any group of letter, number, symbol or <cntrl>G

For DMC 1340: up to 37 characters can follow the NO command

For DMC 1380 or DMC 1340-MX: up to 77 characters can follow the NO command

USAGE: DEFAULTS:

While Moving Yes Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

EXAMPLES:

#A Program A

NO No Operation

NO This Program No Operation

NO Does Absolutely No Operation

NO Nothing No Operation

EN End of Program

DMC 1300 Error! Reference source not found. •• 10 - 242

OB (Binary 92)
FUNCTION: Output Bit

DESCRIPTION:

The OB n, logical expression command defines output bit n = 1 through 8 as either 0
or 1 depending on the result from the logical expression. Any non-zero value of
the expression results in a one on the output.

ARGUMENTS: OB n, expression where

 n denotes the output bit 1 though 8 for the DMC 1310/1340 or 1 through 16 for the
DMC 1350/1380 and -MX.

expression is any valid logical expression, variable or array element.

DPRAM:

The status of the output ports are located at address 02B on the DMC 1310/1340 or
02E-02F on the DMC 1350/1380. Writing to these addresses will change the state
of the output ports.

USAGE: DEFAULTS:

While Moving Yes Default Value

In a Program Yes Default Format

Command Line Yes

Can be Interrogated No

Used as an Operand No

EXAMPLES:

OB 1, POS 1 If POS 1 is non-zero, Bit 1 is high.

 If POS 1 is zero, Bit 1 is low

OB 2, @IN[1]&@IN[2] If Input 1 and Input 2 are both high, then

 Output 2 is set high

OB 3, COUNT[1] If the element 1 in the array is zero, clear bit 3

OB N, COUNT[1] If element 1 in the array is zero, clear bit N

DMC 1300 Error! Reference source not found. •• 10 - 243

OE (Binary C0)
FUNCTION: Off on Error

DESCRIPTION:

The OE command causes the controller to shut off the motor command if a position
error exceeds the limit specified by the ER command occurs or an abort occurs
from either the abort input or on AB command.

If a position error is detected on an axis, and the motion was under an independent
move, only that axis will be shut off. However, if the motion is a coordinated
mode of the types VM, LM or CM, all the participating axes will be stopped.

ARGUMENTS: OE x,y,z,w OEX=x OE a,b,c,d,e,f,g,h where

the argument may be 0 or 1. 0 disables function. 1 enables off-on-error function.

"?" returns the state of the off an error function for the specified axis.

DPRAM:

The status of the Off/On error can be read at bit 1 of the Status #2 address in the Axis
Buffer.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_OEx contains the status of the off-on-error function for the specified axis. 0 = off, 1
= on

RELATED COMMANDS:

"AB" on page 162 Abort

"ER" on page 202 Error limit

"SH" on page 263 Servo Here

#POSERR Error Subroutine

EXAMPLES:

OE 1,1,1,1 Enable OE on all axes

OE 0 Disable OE on X-axis other axes remain unchanged

OE ,,1,1 Enable OE on Z-axis and W -axis other axes remain unchanged

OE 1,0,1,0 Enable OE on X and Z -axis Disable OE on Y and W axis

Hint: The OE command is useful for preventing system damage on excessive error.

DMC 1300 Error! Reference source not found. •• 10 - 244

OF (Binary C2)
FUNCTION: Offset

DESCRIPTION:

The OF command sets a bias voltage in the motor command output or returns a
previously set value. This can be used to counteract gravity or an offset in an
amplifier.

ARGUMENTS: OF x,y,z,w OFX=x OF a,b,c,d,e,f,g,h where

x,y,z,w are signed numbers in the range -9.998 to 9.998 volts with resolution of 0.0003.

"?" returns the offset for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_OFx contains the offset for the specified axis.

EXAMPLES:

OF 1,-2,3,5 Set X-axis offset to 1, the Y-axis offset to -2, the Z-axis to 3,
and the W -axis to 5

OF -3 Set X-axis offset to -3 Leave other axes unchanged

OF ,0 Set Y-axis offset to 0 Leave other axes unchanged

OF ?,?,?,? Return offsets

-3.0000,0.0000,3.0000,5.0000

OF ? Return X offset

-3.0000

OF ,? Return Y offset

0.0000

DMC 1300 Error! Reference source not found. •• 10 - 245

OP (Binary 8F)
FUNCTION: Output Port

DESCRIPTION:

The OP command sends data to the output ports of the controller. You can use the
output port to control external switches and relays.

The first parameter controls the first output port (bits 1-8) and the second output port
(bits 9-16) if the controller has 5 or more axes.

ARGUMENTS: OP m,n where

m is an integer in the range 0 to 65535 decimal, or $0 to FF hexadecimal. (0 to 255 for 4
axes or less). n is an integer in the range 0 to 16772215.

OP ? returns the value of the first argument, m

OP ,? returns the value of the second argument, n.

DPRAM:

The status of the output ports are located at address 02B on the DMC 1310/1340 or
02E-02F on the DMC 1350/1380. Writing to these addresses will change the state
of the output ports.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_OP0 contains the value of the first argument, m

_OP1 contains the value of the second argument, n.

RELATED COMMANDS:

"SB" on page 261 Set output bit

"CB" on page 180 Clear output bit

"OB" on page 242" Output Byte

EXAMPLES:

OP 0 Clear Output Port -- all bits

OP $85 Set outputs 1,3,8; clear the others

MG-OP0 Returns the first parameter "m"

MG-OP1 Returns the second parameter "n"

DMC 1300 Error! Reference source not found. •• 10 - 246

PA (Binary C8)
FUNCTION: Position Absolute

DESCRIPTION:

The PA command will set the final destination of the next move. The position is
referenced to the absolute zero. If a ? is used, then the current destination
(current command position if not moving, destination if in a move) is returned.
For each single move, the largest position move possible is +/-2147483647. Units
are in quadrature counts.

ARGUMENTS: PA x,y,z,w PAX=x PA a,b,c,d,e,f,g,h where

x,y,z,w are signed integers in the range -2147483647 to 2147483648 decimal

DPRAM:

Bit 5 of the Status #1 address in the Axis Buffer indicates when the controller is
performing a position absolute move. Bit 7 of the Status #2 address will show
the direction.

USAGE: DEFAULTS:

While Moving No Default Value -

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_PAx contains current destination (current command position if not moving,
destination if in a move).

RELATED COMMANDS:

"PR" on page 247 Position relative

"SP" on page 264 Speed

"AC" on page 163 Acceleration

"DC" on page 191 Deceleration

"BG" on page 174 Begin

EXAMPLES:

:PA 400,-600,500,200 X-axis will go to 400 counts Y-axis will go to -600
counts Z -axis will go to 500 counts W -axis will go
to 200 counts

:PA ?,?,?,? Returns the current commanded position

400, -600, 500, 200

:BG Start the move

:PA 700 X-axis will go to 700 on the next move while the

:BG Y,Z and W -axis will travel the previously set
relative distance if the preceding move was a PR
move, or will not move if the p receding move was a
PA move.

DMC 1300 Error! Reference source not found. •• 10 - 247

PP (No Binary)
FUNCTION: Program Pause

DESCRIPTION:

PP suspends the execution of the application program and sets the appropriate
semaphore bit. PP is useful when data needs to be input from a host. The
program is resumed when the host clears the appropriate semaphore bit
depending on which task thread had been paused.

ARGUMENTS: None

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line No

Can be Interrogated No

Used as an Operand No

EXAMPLES:

#A Label

MG “INPUT SPEED” Send message

PP Program Pause - host sends SPEED value and clears semaphore bit
to resume

JG SPEED Jog at input speed

BGX Begin motion

EN End program

DMC 1300 Error! Reference source not found. •• 10 - 248

PR (Binary C9)
FUNCTION: Position Relative

DESCRIPTION:

The PR command sets the incremental distance and direction of the next move. The
move is referenced with respect to the current position. If a ? is used, then the
current incremental distance is returned (even if it was set by a PA command).
Units are in quadrature counts.

ARGUMENTS: PR x,y,z,w PRX=x PR a,b,c,d,e,f,g,h where

 x,y,z,w are signed integers in the range -2147483648 to 2147483647 decimal.

"?" returns the current incremental distance for the specified axis.

DPRAM:

Bit 6 of the Status #1 address in the Axis Buffer will show a 1 if the controller is
performing a positional move. Bit 7 of the Status #2 address in the Axis Buffer
will indicate the direction.

USAGE: DEFAULTS:

While Moving No Default Value 0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand No

OPERAND USAGE:

 _PRx contains the current incremental distance for the specified axis.

RELATED COMMANDS:

"PA" on page 246 Position Absolute

"BG" on page 174 Begin

"AC" on page 163 Acceleration

"DC" on page 191 Deceleration

"SP" on page 264 Speed

"IP" on page 218 Increment Position

EXAMPLES:

:PR 100,200,300,400 On the next move the X-axis will go 100 counts,

:BG the Y-axis will go to 200 counts forward, Z-axis will go
300 counts and the W -axis will go 400 counts.

:PR ?,?,? Return relative distances

0000000100,0000000200,0000000300

:PR 500 Set the relative distance for the X axis to 500

:BG The X-axis will go 500 counts on the next move while
the Y-axis will go its previously set relative distance.

Used as an Operand No

DMC 1300 Error! Reference source not found. •• 10 - 249

RA (No Binary)
FUNCTION: Record Array

DESCRIPTION:

The RA command selects one through four arrays for automatic data capture. The
selected arrays must be dimensioned by the DM command. The data to be
captured is specified by the RD command and time interval by the RC command.

ARGUMENTS: RA n [],m [],o [],p [] RA n[],m[],o[],p[],q[],r[],s[],t[] where

 n,m,o and p are dimensioned arrays as defined by DM command. The [] contain
nothing.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"DM" on p age 193 Dimension Array

"RD" on page 251 Record Data

"RC" on page 250 Record Interval

EXAMPLES:

#Record Label

DM POS[100] Define array

RA POS[] Specify Record Mode

RD _TPX Specify data type for record

RC 1 Begin recording at 2 msec intervals

PR 1000;BG Start motion

EN End

Hint: The record array mode is useful for recording the real-time motor position during motion. The
data is automatically captured in the background and does not interrupt the program sequencer.
The record mode can also be used for a teach or learn of a motion path.

DMC 1300 Error! Reference source not found. •• 10 - 250

RC (Binary F0)
FUNCTION: Record

DESCRIPTION:

The RC command begins recording for the Automatic Record Array Mode (RA). RC
0 stops recording.

ARGUMENTS: RC n,m where

n is an integer 1 thru 8 and specifies 2n samples between records. RC 0 stops
recording.

m is optional and specifies the number of records to be recorded. If m is not
specified, the DM number will be used. A negative number for m causes circular
recording over array addresses 0 to m-1. The address for the array element for
the next recording can be interrogated with _RD.

RC? returns status of recording. ‘1’ if recording, ‘0’ if not recording.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_RC contains status of recording. ‘1’ if recording, ‘0’ if not recording.

RELATED COMMANDS:

"DM" o n page 193 Dimension Array

"RD" on page 251 Record Data

EXAMPLES:

#RECORD Record

DM Torque[1000] Define Array

RA Torque[] Specify Record Mode

RD _TTX Specify Data Type

RC 2 Begin recording and set 4 msec between records

JG 1000;BG Begin motion

#A;JP #A,_RC=1 Loop until done

MG "DONE
RECORDING"

Print message

EN End program

DMC 1300 Error! Reference source not found. •• 10 - 251

RD (No Binary)
FUNCTION: Record Data

DESCRIPTION:

The RD command specifies the data type to be captured for the Record Array (RA)
mode. The command type includes:

_DEx 2nd encoder

_TPx Position

_TEx Position error

_SHx Commanded position

_RLx Latched position

_TI Inputs

_OP Outputs

_TSx Switches, only 0-4 bits valid

_SCx Stop code

_TTx Tell torque (Note: the values recorded for torque are in the range
of +/- 32767 where 0 is 0 torque, -32767 is -10 volt command
output, and +32767 is +10 volt.

 where ‘x’ is the axis specifier.

ARGUMENTS: RD _TI,_TPX,_SVZ,_TSY where

The order is important. Each of the four data types correspond with the array
specified in the RA command.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_RD contains the address for the next array element for recording.

RELATED COMMANDS:

"RC" on page 250 Record Interval

"DM" on page 193 Dimension Array

EXAMPLES:

DM ERRORX[50],ERRORY[50] Define array

RA ERRORX[],ERRORY[] Specify record mode

RD _TEX,_TEYS Specify data type

RC1 Begin record

JG 1000;BG Begin motion

DMC 1300 Error! Reference source not found. •• 10 - 252

RE (No Binary)
FUNCTION: Return from Error Routine

DESCRIPTION:

The RE command is used to end a position error handling subroutine or limit switch
handling subroutine. The error handling subroutine begins with the #POSERR
label. The limit switch handling subroutine begins with the #LIMSWI. An RE at
the end of these routines causes a return to the main program. Care should be
taken to be sure the error or limit switch conditions no longer occur to avoid re-
entering the subroutines. If the program sequencer was waiting for a trippoint to
occur, prior to the error interrupt, the trippoint condition is preserved on the
return to the program if RE1 is used. RE0 clears the trippoint. To avoid returning
to the main program on an interrupt, use the ZS command to zero the subroutine
stack.

ARGUMENTS: RE n where

 n = 0 or 1

 0 clears the interrupted trippoint

 1 restores state of trippoint

USAGE: DEFAULTS:

While Moving No Default Value -

In a Program Yes Default Format -

Command Line No

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

#POSERR Error Subroutine

#LIMSWI Limit Subroutine

EXAMPLES:

#A;JP #A;EN Label for main program

#POSERR Begin Error Handling Subroutine

MG "ERROR" Print message

SB1 Set output bit 1

RE Return to main program and clear trippoint

Hint: An applications program must be executing for the #LIMSWI and #POSERR subroutines to
function.

DMC 1300 Error! Reference source not found. •• 10 - 253

RI (No Binary)
FUNCTION: Return from Interrupt Routine

DESCRIPTION:

The RI command is used to end the interrupt subroutine beginning with the label
#ININT. An RI at the end of this routine causes a return to the main program.
The RI command also re-enables input interrupts. If the program sequencer was
interrupted while waiting for a trippoint, such as WT, RI1 restores the trippoint
on the return to the program. RI0 clears the trippoint. To avoid returning to the
main program on an interrupt, use the command ZS to zero the subroutine stack.
This turns the jump subroutine into a jump only.

ARGUMENTS: RI n where

 n = 0 or 1

 0 clears interrupt trippoint

 1 restores trippoint

USAGE: DEFAULTS:

While Moving No Default Value -

In a Program Yes Default Format -

Command Line No

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

#ININT Input interrupt subroutine

"II" on page 215 Enable input interrupts

EXAMPLES:

#A;II1;JP #A;EN Program label

#ININT Begin interrupt subroutine

MG "INPUT
INTERRUPT"

Print Message

SB 1 Set output line 1

RI 1 Return to the main program and restore trippoint

Hint: An applications program must be executing for the #ININT subroutine to function.

DMC 1300 Error! Reference source not found. •• 10 - 254

RL (Binary F1)
FUNCTION: Report Latched Position

DESCRIPTION:

The RL command will return the last position captured by the latch. The latch must
first be armed by the AL command and then a 0 must occur on the appropriate
input. (Input 1,2,3 and 4 for X,Y,Z and W, respectively). The armed state of the
latch can be configured using the CN command.

ARGUMENTS: RL XYZW RL ABCDEFGH where

 the argument specifies the axes to be affected

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_RLx contains the latched position of the specified axis.

RELATED COMMAND:

"A L" on page 167 Arm Latch

EXAMPLES:

JG ,5000 Set up to jog the Y-axis

BGY Begin jog

ALY Arm the Y latch; assume that after about 2 seconds, input goes low

RLY Report the latch

10000

DMC 1300 Error! Reference source not found. •• 10 - 255

RM (Binary B1)
FUNCTION: Response Mode

DESCRIPTION:

The RM command sets the communication mode from the program buffer. This
command determines what happens if there is an outgoing message in the buffer
and another message needs to be sent. Either the new data is lost, the old data is
lost or the program execution is suspended until the buffer is read. This
command has the same response as writing to 028 hex in the Dual Port RAM.

ARGUMENTS: RM n

n = 0 New data is lost

n = 1 Program execution suspended until buffer is read

n = 2 Old data is lost

DPRAM:

Status of the RM command can be read at address 028. Writing to this address will
change the state of the RM command.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

DMC 1300 Error! Reference source not found. •• 10 - 256

RP (No Binary)
FUNCTION: Reference Position

DESCRIPTION:

This command returns the commanded reference position of the motor(s).

ARGUMENTS: RP XYZW RP ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The commanded position of an axis can be read in the corresponding Axis Buffer, ie.
read addresses 114 - 117 for the DMC 1340 X-axis, addresses 214 - 217 for the
DMC 1380 X-axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_RPx contains the commanded reference position for the specified axis.

RELATED COMMAND:

“TP” on page 278 Tell Position

Note: The relationship between RP, TP and TE: TEX equals the difference between the reference
position, RPX, and the actual position, _TPX.

EXAMPLES: Assume that XYZ and W axes are commanded to be at the positions 200, -10, 0, -110

respectively. The returned units are in quadrature counts.

:PF 7 Position format of 7

0:RP

0000200,-0000010,0000000,-0000110 Return X,Y,Z,W reference positions

RPX

0000200 Return the X motor reference position

RPY

-0000010 Return the Y motor reference position

PF-6.0 Change to hex format

RP

$0000C8,$FFFFF6,$000000,$FFFF93 Return X,Y,Z,W in hex

Position=_RPX Assign the variable, Position, the value of RPX

DMC 1300 Error! Reference source not found. •• 10 - 257

The Hint: RP command is useful when operating step motors since it provides the commanded

position in steps when operating in stepper mode.

DMC 1300 Error! Reference source not found. •• 10 - 258

RS (Binary AC)
FUNCTION: Reset

DESCRIPTION:

The RS command resets the state of the processor to its power-on condition. The
previously saved state of the controller, along with parameter values, and saved
sequences are restored.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program No Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

DMC 1300 Error! Reference source not found. •• 10 - 259

<control>R<control>S
FUNCTION: Master Reset

DESCRIPTION:

The Master Reset command resets the controller to factory default settings and
erases EEPROM.

A master reset can also be performed by installing a jumper on the controller at the
location labeled MRST and resetting the controller (power cycle or pressing the
reset button). Remove the jumper after this procedure.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program No Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

DMC 1300 Error! Reference source not found. •• 10 - 260

<control>R<control>V
FUNCTION: Revision Information

DESCRIPTION:

The Revision Information command causes the controller to return firmware revision
information.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program No Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

DMC 1300 Error! Reference source not found. •• 10 - 261

SB (Binary 8D)
FUNCTION: Set Bit

DESCRIPTION:

The SB command sets one of eight bits on the output port or one of 16 bits if the
controller has 5 or more axes.

ARGUMENTS: SB n where

n is an integer in the range 1 to 8 decimal for 1 - 4 axes.

n is an integer in the range 1 to 16 for 5 or more axes.

DPRAM:

The status of the output ports are located at address 02B on the DMC 1310/1340 or
02E-02F on the DMC 1350/1380. Writing to these addresses will change the state
of the output ports.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMAND

"CB" on page 180 Clear Bit

EXAMPLES:

SB 5 Set output bit 5

SB 10 Set output bit 10

DMC 1300 Error! Reference source not found. •• 10 - 262

SC (No Binary)
FUNCTION: Stop Code

DESCRIPTION:

The SC command allows the user to determine why a motor stops. The controller
responds with the stop code as follows:

CODE MEANING CODE MEANING

0 Motors are running,
independent mode

9 Stopped after Finding
Edge (FE)

1 Motors stopped at commanded
independent position

10 Stopped after Homing
(HM)

2 Decelerating or stopped by
FWD limit switches

50 Contour running

3 Decelerating or stopped by
REV limit switches

51 Contour Stop

4 Decelerating or stopped by
Stop Command (ST)

99 MC timeout

6 Stopped by Abort input 100 Motors are running,
vector sequence

7 Stopped by Abort command
(AB)

101 Motors stopped at
commanded vector

8 Decelerating or stopped by Off-
on-Error (OE1)

ARGUMENTS: SC XYZW SC ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The stop code for any given axis can be read in the corresponding Axis Buffer. For
example, the SC for a DMC 1340 is read at 104, while the SC for a DMC 1380 is
read at 204.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_SCx contains the value of the stop code for the specified axis.

EXAMPLES:

Tom=_SCW Assign the Stop Code of W to variable Tom

DMC 1300 Error! Reference source not found. •• 10 - 263

SH (Binary BB)
FUNCTION: Servo Here

DESCRIPTION:

The SH commands tells the controller to use the current motor position as the
command position and to enable servo control here.

This command can be useful when the position of a motor has been manually
adjusted following a motor off (MO) command.

ARGUMENTS: SH XYZW SH ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

Bit 0 of the Status #2 address of the Axis Buffer will show a 1 if the servo is in the
servo here state.

USAGE: DEFAULTS:

While Moving No Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

“MO” on page 238 Motor-off

EXAMPLES:

SH Servo X,Y,Z,W motors

SHX Only servo the X motor, the Y,Z and W motors remain in its
previous state.

SHY Servo the Y motor; leave the X,Z and W motors unchanged

SHZ Servo the Z motor; leave the X,Y and W motors unchanged

SHW Servo the W motor; leave the X,Y and Z motors unchanged

Note: The SH command changes the coordinate system. Therefore, all position commands given
prior to SH, must be repeated. Otherwise, the controller produces incorrect motion.

DMC 1300 Error! Reference source not found. •• 10 - 264

SP (Binary CA)
FUNCTION: Speed

DESCRIPTION:

This command sets the slew speed of any or all axes for independent moves, or it will
return the previously set value. The parameters input will be rounded down to
the nearest factor of 2 and the units of the parameter are in counts per second.
Note: Negative values will be interpreted as the absolute value.

ARGUMENTS: SP x,y,z,w SPX=x SP a,b,c,d,e,f,g,h where

x,y,z,w or a,b,c,d,e,f,g,h are unsigned numbers in the range 0 to 8,000,000 for servo
motors OR

 x,y,z,w or a,b,c,d,e,f,g,h are unsigned numbers in the range 0 to 2,000,000 for stepper

motors

"?" returns the speed for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 25000

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_SPx contains the speed for the specified axis.

RELATED COMMANDS:

"AC" on page 163 Acceleration

"DC" on page 191 Deceleration

“PA” on page 246 Position Absolute

"PR" on page 247 Position Relation

"BG" on page 174 Begin

EXAMPLES:

PR 2000,3000,4000,5000 Specify x,y,z,w parameter

SP 5000,6000,7000,8000 Specify x,y,z,w speeds

BG Begin motion of all axes

AM Z After Z motion is complete

Note: For vector moves, use the vector speed command (VS) to change the speed. SP is not a "mode"
of motion like JOG (JG).

DMC 1300 Error! Reference source not found. •• 10 - 265

ST (Binary D2)
FUNCTION: Stop

DESCRIPTION:

The ST command stops motion on the specified axis. Motors will come to a
decelerated stop. If ST is given without an axis specification, program execution
will stop in addition to XYZW. XYZW specification will not halt program
execution.

ARGUMENTS: ST XYZW ST ABCDEFGH where

 the argument specifies the axes to be affected

No parameters will stop motion on all axes and stop program.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"BG" on page 174 Begin Motion

"AB" on page 162 Abort Motion

"AM" on page 168 Wait for motion end

"DC" on page 191 Deceleration rate

EXAMPLES:

ST X Stop X-axis motion

ST S Stop coordinated sequence

ST XYZW Stop X,Y,Z,W motion

ST Stop program and XYZW motion

ST SZW Stop coordinated XY sequence, and Z and W motion

Hint: Use the after motion complete command, AM, to wait for motion to be stopped.

DMC 1300 Error! Reference source not found. •• 10 - 266

TB (No Binary)
FUNCTION: Tell Status Byte

DESCRIPTION:

The TB command returns status information from the controller as a decimal number. Each bit
of the status byte denotes the following condition when the bit is set (high):

BIT STATUS

Bit 7 Controller addressed

Bit 6 Executing program

Bit 5 Contouring

Bit 4 Executing error or limit switch routine

Bit 3 Input interrupt enabled

Bit 2 Executing input interrupt routine

Bit 1 0 (Reserved)

Bit 0 Echo on

ARGUMENTS:

TB ? returns the status byte

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

 _TB Contains the status byte

EXAMPLES:

"TB" on page 266 Tell status information from the controller

65 Executing program and Echo is on (26 + 20 = 64 + 1 = 65)

DMC 1300 Error! Reference source not found. •• 10 - 267

TC (No Binary)
FUNCTION: Tell Error Code

DESCRIPTION:

The TC command returns a number between 1 and 255. This number is a code that reflects
why a command was not accepted by the controller. This command is useful when the
controller halts execution of a program at a command or when the response to a command
is a question mark. Entering the TC command will provide the user with a code as to the
reason. After TC has been read, it is set to zero. TC 1 returns the text message as well as
the numeric code.

ARGUMENTS: TC n where

n=0 returns code only

n=1 returns code and message

TC ? returns the error code

CODE EXPLANATION CODE EXPLANATION

1 Unrecognized command 50 Not enough fields

2 Command only valid from program 51 Question mark not valid

3 Command not valid in program 52 Missing " or string too long

4 Operand error 53 Error in {}

5 Input buffer full 54 Question mark part of string

6 Number out of range 55 Missing [or []

7 Command not valid while running 56 Array index invalid or out of
range

8 Command not valid when not
running

57 Bad function or array

9 Variable error 58 Unrecognized command in a
command response (i.e._GNX)

10 Empty program line or undefined
label

59 Mismatched parentheses

11 Invalid label or line number 60 Download error - line too long or
too many lines

12 Subroutine more than 16 deep 61 Duplicate or bad label

13 JG only valid when running in jog
mode

62 Too many labels

14 EEPROM check sum error 65 IN command must have a comma

15 EEPROM write error 66 Array space full

16 IP incorrect sign during position
move or IP given during forced
deceleration

67 Too many arrays or variables

17 ED, BN and DL not valid while
program running

71 IN only valid in task #0

18 Command not valid when
contouring

80 Record mode already running

DMC 1300 Error! Reference source not found. •• 10 - 268

contouring

19 Application strand already
executing

81 No array or source specified

20 Begin not valid with motor off 82 Undefined Array

21 Begin not valid while running 83 Not a valid number

22 Begin not possible due to Limit
Switch

84 Too many elements

24 Begin not valid because no
sequence defined

90 Only X Y Z W valid operand

25 Variable not given in IN command 96 SM jumper needs to be installed
for stepper motor operation

28 S operand not valid 100 Not valid when running ECAM

29 Not valid during coordinated move 101 Improper index into ET

(must be 0-256)

30 Sequence segment too short 102 No master axis defined for ECAM

31 Total move distance in a sequence
> 2 billion

103 Master axis modulus greater than
256∗EP value

32 More than 511 segments in a
sequence

104 Not valid when axis performing
ECAM

41 Contouring record range error 105 EB1 command must be given first

42 Contour data being sent too slowly 118 Controller has GL1600 not GL1800

46 Gear axis both master and follower

DPRAM:

Bit 0 and bit 1 of address 010 in the General Registers indicates if there is an error in
either an application program or command from the command buffer. Address
012 of the General Registers will specify which error was generated from the
command buffer, while address 013 will specify which error was generated from
the application program.

USAGE: DEFAULTS:

While Moving Yes Default Value ---

In a Program Yes Default Format 3.0

Not in a Program Yes

Can be Interrogated Yes

Used in an Operand Yes

USAGE:

_TC contains the error code

EXAMPLES:

:GF32 Bad command

?TC Tell error code

DMC 1300 Error! Reference source not found. •• 10 - 269

001 Unrecognized command

DMC 1300 Error! Reference source not found. •• 10 - 270

TD (No Binary)
FUNCTION: Tell Dual Encoder

DESCRIPTION::

This command returns the current position of the dual (auxiliary) encoder(s). Auxiliary
encoders are not available for stepper axes or for the axis where output compare is used.

When operating with stepper motors, the TD command returns the number of counts that

have been output by the controller.

ARGUMENTS: TD XYZW TD ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The auxiliary encoder position for an axis can be read in the corresponding Axis
Buffer, ie. addresses 110 through 113 for the DMC 1340 X-axis, or addresses 210
through 213 for the DMC 1380 X-axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:

"DE" on page 192 Dual Encoder

EXAMPLES:

:PF 7 Position format of 7

:TD Return X,Y,Z,W Dual encoders

0000200,-0000010,0000000,-0000110

TDX Return the X motor Dual encoder

0000200

DUAL=_TDX Assign the variable, DUAL, the value of TDX

DMC 1300 Error! Reference source not found. •• 10 - 271

TE (No Binary)
FUNCTION: Tell Error

DESCRIPTION::

This command returns the current position error of the motor(s). The range of possible error is
2147483647. The Tell Error command is not valid for step motors since they operate open-
loop.

ARGUMENTS: TE XYZW TE ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The position error for an axis can be read in the corresponding Axis Buffer, ie.
addresses 10A through 10D for the DMC 1340 X-axis, or addresses 20A through
20D for the DMC 1380 X-axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format Position Format

Not in a Program Yes

Can be Interrogated No

Used in an Operand Yes

RELATED COMMANDS:

 "OE" on page 243 Off On Error

 "ER" on page 202 Error Limit

 #POSERR Error Subroutine

EXAMPLES:

TE Return all position errors

00005,-00002,00000,00006

TEX Return the X motor position error

00005

TEY Return the Y motor position error

-00002

Error =_TEX Sets the variable, Error, with the X-axis position e rror

Hint: Under normal operating conditions with servo control, the position error should be small. The
position error is typically largest during acceleration.

DMC 1300 Error! Reference source not found. •• 10 - 272

TI (Binary E0)
FUNCTION: Tell Inputs

DESCRIPTION:

This command returns the state of the general inputs. TI or TI0 return inputs I1
through I8, TI1 returns I9 through I16 and TI2 returns I17 through I24.

 TI or TI0 TI1 TI2

MSB Bit 7 Input 8 Input 16 Input 24

LSB Bit 6 Input 7 Input 15 Input 23

LSB Bit 5 Input 6 Input 14 Input 22

LSB Bit 4 Input 5 Input 13 Input 21

LSB Bit 3 Input 4 Input 12 Input 20

LSB Bit 2 Input 3 Input 11 Input 19

LSB Bit 1 Input 2 Input 10 Input 18

LSB Bit 0 Input 1 Input 9 Input 17

ARGUMENTS: TIn where

n equals 0, 1 or 2

TI ? returns the status byte of input block 0

DPRAM:

Input status can be read from the Dual Port RAM at address 02A for the DMC
1310/1340 or addresses 02A through 02C for the DMC 1350/1380.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_TIn contains the status byte of the input block specified by ‘n’. Note that the
operand can be masked to return only specified bit information - see section on
Bitwise operations.

EXAMPLES:

TI

08 Input 4 is high, others low

TI

00 All inputs low

Input=_TI Sets the variable, Input, with the TI value

TI

255 All inputs high

DMC 1300 Error! Reference source not found. •• 10 - 273

DMC 1300 Error! Reference source not found. •• 10 - 274

TIME*
FUNCTION: Time Operand (Keyword)

DESCRIPTION:

*The TIME operand returns the value of the intenal free running, real time clock. The
returned value represents the number of servo loop updates and is based on the
TM command. The default value for the TM command is 1000. With this update
rate, the operand TIME will increase by 1 count every update of approximately
1000usec. Note that a value of 1000 for the update rate (TM command) will
actually set an update rate of 1/1024 seconds. Thus the value returned by the
TIME operand will be off by 2.4% of the actual time.

The clock is reset to 0 with a standard reset or a master reset.

The keyword, TIME, does not require an underscore "_" as does the other operands.

USAGE:

Used as an Operand Yes Format TIME

EXAMPLES:

MG TIME Display the value of the internal clock

DMC 1300 Error! Reference source not found. •• 10 - 275

TL (Binary BE)
FUNCTION: Torque Limit

DESCRIPTION:

The TL command sets the limit on the motor command output. For example, TL of 5
limits the motor command output to 5 volts. Maximum output of the motor
command is 9.998 volts.

ARGUMENTS: TL x,y,z,w TLX=x TL a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range 0 to 9.998 volts with resolution of 0.003
volts

"?" returns the value of the torque limit for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

 _TLx contains the value of the torque limit for the specified axis.

EXAMPLES:

TL 1,5,9,7.5 Limit X-axis to 1volt Limit Y-axis to 5 volts Limit Z-axis to 9 volts
Limit W -axis to 7.5 volts

TL ?,?,?,? Return limits

1.0000,5.0000,9.0000,

7.5000

TL ? Return X-axis limit

1.0000

DMC 1300 Error! Reference source not found. •• 10 - 276

TM (Binary AE)
FUNCTION: Time

DESCRIPTION:

The TM command sets the sampling period of the control loop. Changing the
sampling period will uncalibrate the speed and acceleration parameters. A
negative number turns off the internal clock allowing for an external source to be
used as the time base. The units of this command are µsec.

ARGUMENTS: TM n where

n is an integer in the range 250 to 20000 decimal with resolution of 125 microseconds.
The minimum sample time for the DMC-1310 is 250 µsec; 375 µsec for the DMC-
1320; 500 µsec for the DMC-1330; 500 µsec for the DMC-1340; 625 µsec for the
DMC-1350; 750 µsec for the DMC-1360; 875 µsec for the DMC-1370; 1000 µsec
for the DMC-1380.

"?" returns the value of the sample time.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 1.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

 _TM contains the value of the sample time.

EXAMPLES:

TM -1000 Turn off internal clock

TM 2000 Set sample rate to 2000 [EQN "[mu]"]sec (This will cut all speeds in half and
all acceleration in fourths)

TM 1000 Return to default sample rate

DMC 1300 Error! Reference source not found. •• 10 - 277

TN (Binary EC)
FUNCTION: Tangent

DESCRIPTION:

The TN m,n command describes the tangent axis to the coordinated motion path. m is
the scale factor in counts/degree of the tangent axis. n is the absolute position
of the tangent axis where the tangent axis is aligned with zero degrees in the
coordinated motion plane. The tangent axis is specified with the VM n,m,p
command where p is the tangent axis. The tangent function is useful for cutting
applications where a cutting tool must remain tangent to the part.

ARGUMENTS: TN m,n where

m is the scale factor in counts/degree, in the range between -127 and 127 with a
fractional resolution of 0.004

When operating with stepper motors, m is the scale factor in steps / degree

n is the absolute position at which the tangent angle is zero, in the range between +/-
2⋅ 109

TN ? returns the first position value for the tangent axis.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format --

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_TN contains the first position value for the tangent axis. This allows the user to
correctly position the tangent axis before the motion begins.

RELATED COMMANDS:

"VM" on page 289 Vector mode

EXAMPLES:

VM X,Y,Z Specify coordinated mode for X and Y-axis; Z-axis is tangent to the
motion path

TN 100,50 Specify scale factor as 100 counts/degree and 50 counts at which
tangent angle is zero

VP 1000,2000 Specify vector position X,Y

VE End Vector

BGS Begin coordinated motion with tangent axis

DMC 1300 Error! Reference source not found. •• 10 - 278

TP (No Binary)
FUNCTION: Tell Position

DESCRIPTION:

This command returns the current position of the motor(s).

ARGUMENTS: TP XYZW TP ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The actual position for an axis can be read in the corresponding Axis Buffer, ie.
addresses 106 through 109 for the DMC 1340 X-axis, or addresses 206 through
209 for the DMC 1380 X-axis.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format --

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_TPx contains the current position value for the specified axis.

EXAMPLES:

Assume the X-axis is at the position 200 (decimal), the Y-axis is at the position -10 (decimal),
the Z-axis is at position 0, and the W-axis is at -110 (decimal). The returned parameter
units are in quadrature counts.

:PF 7 Position format of 7

:TP Return X,Y,Z,W positions

0000200,-0000010,0000000,-0000110

TPX Return the X motor position

0000200

TPY Return the Y motor position

-0000010

PF-6.0 Change to hex format

TP Return X,Y,Z,W in hex

$0000C8,$FFFFF6,$000000,$FFFF93

Position=_TPX Assign the variable, Position, the value of TPX

DMC 1300 Error! Reference source not found. •• 10 - 279

TR (Binary AF)
FUNCTION: Trace

DESCRIPTION:

The TR command causes each instruction in a program to be sent out the
communications port prior to execution. TR1 enables this function and TR0
disables it. The trace command is useful in debugging programs.

ARGUMENTS: TR n where

 n=0 or 1

 0 disables function

 1 enables function

DPRAM:

Bit 6 of address 010 in the General Registers tells the status of the trace command.

USAGE: DEFAULTS:

While Moving Yes Default Value TR0

In a Program Yes Default Format --

Command Line Yes

Can be Interrogated No

Used as an Operand No

DMC 1300 Error! Reference source not found. •• 10 - 280

TS (Binary DF)
FUNCTION: Tell Switches

DESCRIPTION:

TS returns status information of the Home switch, Forward Limit switch and Reverse
Limit switch, error conditions, motion condition and motor state. The value
returned by this command is decimal and represents an 8 bit value (decimal value
ranges from 0 to 255). Each bit represents the following status information:

BIT STATUS

Bit 7 Axis in motion if high

Bit 6 Axis error exceeds error limit if high

Bit 5 X motor off if high

Bit 4 Undefined

Bit 3 Forward Limit X inactive

Bit 2 Reverse Limit X inactive

Bit 1 Home X

Bit 0 Latched

ARGUMENTS: TS XYZW TS ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The status bits of this command differ from the switches byte in the Axis Buffers.
Refer to the address location and description in Chapter 4.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_TS contains the current status of the switches.

DMC 1300 Error! Reference source not found. •• 10 - 281

EXAMPLES:

V1=_TSY Assigns value of TSY to the variable V1

V1= Interrogate value of variable V1

015 (returned value) Decimal value corresponding to bit pattern 00001111

Y axis not in motion (bit 7 - value of 0)

Y axis error limit not exceeded (bit 6 value of 0)

Y axis motor is on (bit 5 value of 0)

Y axis forward limit is inactive (bit 3 value of 1)

Y axis reverse limit is inactive (bit 2 value of 1)

Y axis home switch is high (bit 1 value of 1)

Y axis latch is not armed (bit 0 value of 1)

DMC 1300 Error! Reference source not found. •• 10 - 282

TT (No Binary)
FUNCTION: Tell Torque

DESCRIPTION:

The TT command reports the value of the analog output signal, which is a number
between -9.998 and 9.998 volts.

ARGUMENTS: TT XYZW TT ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The torque output of the controller can be read in the corresponding Axis Buffer. For
example, X- axis torque for the DMC 1340 is read at addresses 10E through 10F,
while X-axis torque for the DMC 1380 is read at addresses 20E through 20F.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 1.4

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_TTx contains the value of the torque for the specified axis.

RELATED COMMANDS:

"TL" on page 275 Torque Limit

EXAMPLES:

V1=_TTX Assigns value of TTX to variable, V1

TTX Report torque on X

-0.2843 Torque is -.2843 volts

DMC 1300 Error! Reference source not found. •• 10 - 283

TV (No Binary)
FUNCTION: Tell Velocity

DESCRIPTION:

The TV command returns the actual velocity of the axes in units of quadrature
count/s. The value returned includes the sign.

ARGUMENTS: TV XYZW TV ABCDEFGH where

 the argument specifies the axes to be affected

DPRAM:

The actual velocity of an axis can be read in the corresponding Axis Buffer, ie. 11C
through 11F for the X-axis velocity of the DMC 1340 and 21C through 21F for the
X-axis velocity of the DMC 1380.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format 7.0

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_TVx contains the value of the velocity for the specified axis.

EXAMPLES:

VELX=_TVX Assigns value of X-axis velocity to the variable VELX

TVX Returns the Y-axis velocity

0003420

Note: The TV command is computed using a special averaging filter (over approximately .25 sec).
Therefore, TV will return average velocity, not instaneous velocity.

DMC 1300 Error! Reference source not found. •• 10 - 284

TW (No Binary)
FUNCTION: Timeout for IN-Position (MC)

DESCRIPTION:

The TW x,y,z,w command sets the timeout in msec to declare an error if the MC
command is active and the motor is not at or beyond the actual position within n
msec after the completion of the motion profile. If a timeout occurs, then the MC
trippoint will clear and the stopcode will be set to 99. An application program
will jump to the special label #MCTIME. The RE command should be used to
return from the #MCTIME subroutine.

ARGUMENTS: TW x,y,z,w TWX=X TW a,b,c,d,e,f,g,h where

x,y,z,w specifies timeout in msec range 0 to 32767 msec -1 disables the timeout.

"?" returns the timeout in msec for the MC command for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 32766

In a Program Yes Default Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_TWx contains the timeout in msec for the MC command for the specified axis.

RELATED COMMANDS:

"MC" on page 234 Motion Complete trippoint

DMC 1300 Error! Reference source not found. •• 10 - 285

UI (Binary 8B)
FUNCTION: User Interrupt

DESCRIPTION:

The UI command causes an interrupt on the selected IRQ line. Prior to using
interrupts, jumpers must be placed on the controller to select the interrupt
priority (IRQ1 - IRQ7) and vector placement (IAD1 - IAD4). An interrupt service
routine must be incorporated into the VME host program.

ARGUMENTS: UI n where

 n is an integer between 0 and 15.

DPRAM:

The user interrupt status may be read at address 030, bit 4 of the General Registers,
while address 033 will show the user interrupt number.

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

EXAMPLES:

#I Label

EI,,8 Enable interrupt vector 8

PR 10000 Position relative

SP 5000 Speed

BGX Begin motion

AS Wait for at speed

UI 08 Send interrupt 1

EN End program

This program sends an interrupt to the selected IRQ line using vector 8. A read at address 030 will
show a 01, while a read at address 033 will show a 08.

DMC 1300 Error! Reference source not found. •• 10 - 286

VA (Binary E3)
FUNCTION: Vector Acceleration

DESCRIPTION:

This command sets the acceleration rate of the vector in a coordinated motion
sequence. The parameter input will be rounded down to the nearest factor of
1024. The units of the parameter is counts per second squared.

ARGUMENTS: VA n where

n is an unsigned number in the range 1024 to 68,431,360 decimal.

"?" returns the value of the vector acceleration for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value 262144

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_VAx contains the value of the vector acceleration for the specified axis.

RELATED COMMANDS:

"VS" on page 293 Vector Speed

"VP" on page 291 Vector Position

"VE" on page 288 End Vector

"CR" on page 186 Circle

"VM" on page 289 Vector Mode

"BG" on page 174 Begin Sequence

"VD" on page 287 Vector Deceleration

"VT" on page 294 Vector smoothing constant - S-curve

EXAMPLES:

VA 1024 Set vector acceleration to 1024 counts/sec2

VA ? Return vector acceleration

00001024

VA 20000 Set vector acceleration

VA ?

0019456 Return vector acceleration

 ACCEL=_VA Assign variable, ACCEL, the value of VA

DMC 1300 Error! Reference source not found. •• 10 - 287

VD (Binary E5)
FUNCTION: Vector Deceleration

DESCRIPTION:

This command sets the deceleration rate of the vector in a coordinated motion
sequence. The parameter input will be rounded down to the nearest factor of
1024. The units of the parameter is counts per second squared.

ARGUMENTS: VD n where

n is an unsigned number in the range 1024 to 68,431,360 decimal.

"?" returns the value of the vector deceleration for the specified axis.

USAGE: DEFAULTS:

While Moving No Default Value 262144

In a Program Yes Default Format Position Format

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_VDx contains the value of the vector deceleration for the specified axis.

RELATED COMMANDS:

"VA" on page 286 Vector Acceleration

"VS" on page 293 Vector Speed

"VP" on page 291 Vector Position

"CR" on page 186 Circle

"VE" on page 288 Vector End

"VM" on page 289 Vector Mode

"BG" on page 174 Begin Sequence

"VT" on page 294 Smoothing constant - S-curve

EXAMPLES:

#VECTOR Vector Program Label

VMXY Specify plane of motion

VA1000000 Vector Acceleration

VD 5000000 Vector Deceleration

VS 2000 Vector Speed

VP 10000, 20000 Vector Position

VE End Vector

BGS Begin Sequence

DMC 1300 Error! Reference source not found. •• 10 - 288

VE (Binary E6)
FUNCTION: Vector Sequence End

DESCRIPTION:

VE is required to specify the end segment of a coordinated move sequence. VE
would follow the final VP or CR command in a sequence. VE is equivalent to the
LE command.

ARGUMENTS:

VE ? returns the length of the vector in counts.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_VE contains the length of the vector in counts.

RELATED COMMANDS:

"VM" on page 289 Vector Mode

"VS" on page 293 Vector Speed

"VA" on page 286 Vector Acceleration

"VD" on page 287 Vector Deceleration

"CR" on page 186 Circle

"VP" on page 291 Vector Position

"BG" on page 174 Begin Sequence

"CS" on page 188 Clear Sequence

EXAMPLES:

VM XY Vector move in XY

VP 1000,2000 Linear segment

CR 0,90,180 Arc segment

VP 0,0 Linear segment

VE End sequence

BGS Begin motion

DMC 1300 Error! Reference source not found. •• 10 - 289

VM (Binary E7)
FUNCTION: Coordinated Motion Mode

DESCRIPTION:

 The VM command specifies the coordinated motion mode and the plane of motion. This mode
may be specified for motion on any set of two axes.

The motion is specified by the instructions VP and CR, which specify linear and
circular segments. Up to 511 segments may be given before the Begin Sequence
(BGS) command. Additional segments may be given during the motion when the
DMC 1300 buffer frees additional spaces for new segments.

The Vector End (VE) command must be given after the last segment. This tells the
controller to decelerate to a stop during the last segment.

It is the responsibility of the user to keep enough motion segments in the buffer to
ensure continuous motion. VM ? returns the available spaces for motion
segments that can be sent to the buffer.

511 returns means that the buffer is empty and 511 segments may be sent. A zero
means that the buffer is full and no additional segments may be sent.

ARGUMENTS: VM nmp where

 n and m specifies the plane of vector motion. The parameters can be any two axes of
X,Y,Z,W or A,B,C,D,E,F,G,H. The parameter, p, is the tangent axis X,Y,Z,W or
A,B,C,D,E,F,G,H. A value of N for the parameter, p, turns off tangent.

Vector Motion can be specified for one axis by specifying the parameter, m, as N.
This allows for sinusoidal motion on 1 axis..

DPRAM:

Bit 0 of the Status #1 address in the Axis Buffer indicates if the controller is in the
coordinated motion mode.

USAGE: DEFAULTS:

While Moving No Default Value X,Y

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

OPERAND USAGE:

 _VM contains instantaneous commanded vector velocity.

RELATED COMMANDS:

"VP" on page 291 Vector Position

"VS" on page 293 Vector Speed

"VA" on page 286 Vector Acceleration

"VD" on page 287 Vector Deceleration

"CR" on page 186 Circle

"VE" on page 288 End Vector Sequence

"BG" on page 174 Begin Sequence

DMC 1300 Error! Reference source not found. •• 10 - 290

"CS" on page 188 Clear Sequence

"CS" on page 188 _CS - Segment counter

"VT" on page 294 Vector smoothing constant -- S-curve

"AV" on page 173 Vector distance

EXAMPLES:

VM X,Y Specify coordinated mode for X,Y

CR 500,0,180 Specify arc segment

VP 100,200 Specify linear segment

VE End vector

BGS Begin sequence

DMC 1300 Error! Reference source not found. •• 10 - 291

VP (Binary B2)
FUNCTION Vector Position

DESCRIPTION:

The VP command defines the target coordinates of a straight line segment in a 2 axis
motion sequence. The axes are chosen by the VM command. The motion starts
with the Begin sequence command. The units are in quadrature counts, and are a
function of the vector scale factor. For three or four axis linear interpolation, use
the LI command.

ARGUMENTS: VP n,m < n where

n and m are signed integers in the range -2147483648 to 2147483647. The length of
each segment must be limited to 8 ⋅ 106.

n specifies a vector speed to be taken into effect at the execution of the vector
segment. n is an unsigned even integer between 0 and 8,000,000 for servo motor
operation and between 0 and 2,000,000 for stepper motors.

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_VPx contains the absolute coordinate of the axes at the last intersection along the
sequence. For example, during the first motion segment, this instruction returns
the coordinate at the start of the sequence. The use as an operand is valid in the
linear mode, LM, and in the Vector mode, VM.

RELATED COMMANDS:

"CR" on page 186 Circle

"VM" on page 289 Vector Mode

"VA" on page 286 Vector Acceleration

"VD" on page 287 Vector Deceleration

"VE" on page 288 Vector End

"VS" on page 293 Vector Speed

"BG" on page 174 Begin Sequence

"VT" on page 294 Vector smoothing

DMC 1300 Error! Reference source not found. •• 10 - 292

EXAMPLES:

#A Program A

VM X,Y Specify motion plane

VP 1000,2000 Specify vector position X,Y

CR 1000,0,360 Specify arc

VE Vector end

VS 2000 Specify vector speed

VA 400000 Specify vector acceleration

BGS Begin motion sequence

EN End Program

Hint: The first vector in a coordinated motion sequence defines the origin for that sequence. All
other vectors in the sequence are defined by their endpoints with respect to the start of the move
sequence.

DMC 1300 Error! Reference source not found. •• 10 - 293

VS (Binary E4)
FUNCTION: Vector Speed

DESCRIPTION:

The VS command specifies the speed of the vector in a coordinated motion sequence
in either the LM or VM modes. The parameter input is rounded down to the
nearest factor of 2. The units are counts per second. VS may be changed during
motion.

Vector Speed can be calculated by taking the square root of the sum of the squared
values of speed for each axis specified for vector or linear interpolated motion.

ARGUMENTS: VS n where

n specifies the rate

n is an unsigned number in the range 2 to 8,000,000 decimal for servo motors and 2 to
8,000,000 decimal for stepper motors

VS ? returns the vector speed.

USAGE: DEFAULTS:

While Moving Yes Default Value 8192

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_VS contains the vector speed.

RELATED COMMANDS:

"VA" on page 286 Vector Acceleration

"VP" on page 291 Vector Position

"CR" on page 186 Circle

"LM" on page 231 Linear Interpolation

"VM" on page 289 Vector Mode

"BG" on page 174 Begin Sequence

"VE" on page 288 Vector End

EXAMPLES:

VS 2000 Define vector speed as 2000 counts/sec

 VS ? Return vector speed

002000

Hint: Vector speed can be attached to individual vector segments. For more information, see
description of VP, CR, and LI commands.

DMC 1300 Error! Reference source not found. •• 10 - 294

VT (Binary EA)
FUNCTION: Vector Time Constant - S curve

DESCRIPTION:

The VT command filters the acceleration and deceleration functions in vector moves
of VM, LM type to produce a smooth velocity profile. The resulting profile,
known as S-curve, has continuous acceleration and results in reduced
mechanical vibrations. VT sets the bandwidth of the filter, where 1 means no
filtering and 0.004 means maximum filtering. Note that the filtering results in
longer motion time.

ARGUMENTS: VT n where

n is a positive number in the range between 0.004 and 1.0, with a resolution of 1/256.

VT ? returns the vector time constant.

USAGE: DEFAULTS:

While Moving Yes Default Value 1.0

In a Program Yes Default Format 1.4

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_VT contains the vector time constant.

RELATED COMMANDS:

"IT" on page 219 Independent Time Constant for smoothing independent moves

EXAMPLES:

VT 0.8 Set vector time constant

VT ? Return vector time constant

0.8

DMC 1300 Error! Reference source not found. •• 10 - 295

WC (No Binary)
FUNCTION: Wait for Contour Data

DESCRIPTION:

The WC command acts as a flag in the Contour Mode. After this command is
executed, the controller does not receive any new data until the internal contour
data buffer is ready to accept new commands. This command prevents the
contour data from overwriting on itself in the contour data buffer.

USAGE: DEFAULTS:

While Moving Yes Default Value 1.0

In a Program Yes Default Format 1.4

Command Line Yes

Can be Interrogated No

Used as an Operand No

RELATED COMMANDS:

"CM" on page 183 Contour Mode

"CD" on page 181 Contour Data

"DT" on page 195 Contour Time

EXAMPLES:

CM XYZW Specify contour mode

DT 4 Specify time increment for contour

CD 200,350,-150,500 Specify incremental position on X,Y,Z and W X-axis moves 200
counts Y-axis moves 300 counts Z -axis moves -150 counts W -axis
moves 500 counts

W C Wait for contour data to complete

CD 100,200,300,400

W C Wait for contour data to complete

DT 0 Stop contour

CD 0,0,0,0 Exit mode

DMC 1300 Error! Reference source not found. •• 10 - 296

WT (Binary A6)
FUNCTION: Wait

DESCRIPTION:

The WT command is a trippoint used to time events. After this command is executed,
the controller will wait for the number of samples specified before executing the
next command. If the TM command has not been used to change the sample rate
from 1 msec, then the units of the Wait command are milliseconds.

ARGUMENTS: WT n where

 n is an integer in the range 0 to 2 Billion decimal

USAGE: DEFAULTS:

While Moving Yes Default Value -

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand No

EXAMPLES: Assume that 10 seconds after a move is over a relay must be closed.

#A Program A

PR 50000 Position relative move

BGX Begin the move

AMX After the move is over

WT 10000 Wait 10 seconds

SB 0 Turn on relay

EN End Program

Hint: To achieve longer wait intervals, just stack multiple WT commands.

DMC 1300 Error! Reference source not found. •• 10 - 297

XQ (Binary 82)
FUNCTION: Execute Program

DESCRIPTION:

The XQ command begins execution of a program residing in the program memory of
the programs may be executed simultaneously with the DMC-1300.

ARGUMENTS: XQ #A,n XQm,n where

A is a program name of up to seven characters.

 m is a line number

n is an integer representing the thread number for multitasking in the range of 0 to 3.

NOTE: The arguments for the command, XQ, are optional. If no arguments are given,
the first program in memory will be executed as thread 0.

DPRAM:

Bit 7 of address 010 in the General Registers indicates if an application strand is
executing.

USAGE: DEFAULTS:

While Moving Yes Default Value of n: 0

In a Program Yes Default Format -

Command Line Yes

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_XQn contains the current line number of execution for thread n, and -1 if thread n is
not running.

RELATED COMMANDS:

"HX" on page 214 Halt execution

EXAMPLES:

XQ #Apple,0 Start execution at label Apple, thread zero

XQ #data,2 Start execution at label data, thread two

XQ 0 Start execution at line 0

Hint: Don't forget to quit the edit mode first before executing a program!

DMC 1300 Error! Reference source not found. •• 10 - 298

ZR (Binary B9)
FUNCTION: Zero

DESCRIPTION:

The ZR command sets the compensating zero in the control loop or returns the
previously set value. It fits in the control equation as follows:

 D(z) = GN(z-ZR/z)

ARGUMENTS: ZR x,y,z,w ZRX=x ZR a,b,c,d,e,f,g,h where

x,y,z,w are unsigned numbers in the range 0 to 1 decimal with a resolution of 1/256.

"?" returns the value of the compensating zero for the specified axis.

USAGE: DEFAULTS:

While Moving Yes Default Value .9143

In a Program Yes Default Format 3.0

Command Line Yes

Can be Interrogated Yes

Used as an Operand Yes

OPERAND USAGE:

_ZRx contains the value of the compensating zero for the specified axis.

RELATED COMMANDS:

"GN" on page 210 Gain

"KD" on page … Derivative

"KP" on page 225 Proportional

"KI" on page 224 Integral Gain

EXAMPLES:

ZR .95,.9,.8,.822 Set X-axis zero to 0.95, Y-axis to 0.9, Z-axis to 0.8, W -axis zero
to 0.822

ZR ?,?,?,? Return all zeroes

0.9527,0.8997,0.7994,0.8244

ZR ? Return X zero only

0.9527

ZR ,? Return Y zero only

0.8997

DMC 1300 Error! Reference source not found. •• 10 - 299

ZS (Binary 83)
FUNCTION: Zero Subroutine Stack

DESCRIPTION:

The ZS command is only valid in an application program and is used to avoid
returning from an interrupt (either input or error). ZS alone returns the stack to
its original condition. ZS1 adjusts the stack to eliminate one return. This turns
the jump to subroutine into a jump. Do not use RI (Return from Interrupt) when
using ZS. To re-enable interrupts, you must use II command again.

The status of the stack can be interrogated with the operand _ZSx - see operand
usage below.

ARGUMENTS: ZS n where

 0 returns stack to original condition

 1 eliminates one return on stack

USAGE: DEFAULTS:

While Moving Yes Default Value 0

In a Program Yes Default Format 3.0

Command Line No

Can be Interrogated No

Used as an Operand Yes

OPERAND USAGE:

_ZSn contains the stack level for the specified thread where n = 0,1,2 or 3. Note: n
can also be specified using X (thread 0), Y(thread 1), Z(thread 2) or W(thread 3) .

EXAMPLES:

II1 Input Interrupt on 1

#A;JP #A;EN Main program

#ININT Input Interrupt

MG "INTERRUPT" Print message

S=_ZS Interrogate stack

S= Print stack

ZS Zero stack

S=_ZS Interrogate stack

S= Print stack

EN End

DMC 1300 Error! Reference source not found. •• 10 - 300

DMC 1300 Appendices •• A - 301

Appendices

Electrical Specifications

Servo Control
ACMD Amplifier Command: +/-10 Volts analog signal. Resolution 16-bit DAC or .0003

Volts. 3 mA maximum

A+,A-,B+,B-,IDX+,IDX- Encoder and
Auxiliary

TTL compatible, but can accept up to +/-12 Volts. Quadrature
phase on CHA,CHB. Can accept single-ended (A+,B+ only) or
differential (A+,A-,B+,B-). Maximum A,B edge rate: 8 MHz.
Minimum IDX pulse width: 120 nsec.

Stepper Control
Pulse TTL (0-5 Volts) level at 50% duty cycle. 2,000,000 pulses/sec

maximum frequency

Direction TTL (0-5 Volts)

Input/Output
Uncommitted Inputs, Limits, Home
Abort Inputs:

2.2K ohm in series with optoisolator. Requires at least 1 mA
for on. Can accept up to 28 Volts without additional series
resistor. Above 28 Volts requires additional resistor.

AN[1] thru AN[7] Analog Inputs: Standard configuration is +/-10 Volt. 12-Bit Analog-to-Digital
convertor.

OUT[1] thru OUT[8] Outputs: TTL.

OUT[9] through OUT [16] Outputs TTL (only available on controllers with 4 or more axes)

IN[17] through IN[24] Inputs TTL (only available on controllers with 4 or more axes)

DMC 1300 Appendices •• A - 302

Power
+5V 750 mA

+12V 40 mA

-12V 40mA

Performance Specifications
Minimum Servo Loop Update Time: DMC-1310 -- 250 µsec

 DMC-1320 -- 375 µsec

 DMC-1330 -- 500 µsec

 DMC-1340 -- 500 µsec

Position Accuracy: +/-1 quadrature count

Velocity Accuracy:

 Long Term Phase-locked, better than .005%

 Short Term System dependent

Position Range: +/-2147483647 counts per move

Velocity Range: Up to 8,000,000 counts/sec

Velocity Resolution: 2 counts/sec

Motor Command Resolution: 14 Bits or .0012V for DMC 1300, 16 bit or 0.0003 for

DMC 1300-18

Variable Range: +/-2 billion

Variable Resolution: 1 ⋅ 10-4

Array Size: 1600 elements

 8000 elements - DMC-1340-MX and DMC-1380

Program Size: 500 lines x 40 characters

 1000 lines x 80 characters: DMC-1380

 2000 lines x 40 characters: DMC-1340-MX

DMC 1300 Appendices •• A - 303

Connectors for DMC 1300 Main Board

J2 - Main (60 pin IDC)

 1 Ground 2 5 Volts

 3 Error 4 Reset

 5 Limit Common 6 Forward Limit - X

 7 Reverse Limit - X 8 Home - X

 9 Forward Limit - Y 10 Reverse Limit - Y

11 Home - Y 12 Forward Limit - Z

13 Reverse Limit - Z 14 Home - Z

15 Forward Limit - W 16 Reverse Limit - W

17 Home - W 18 Output 1

19 Input Common 20 Latch X Input 1

21 Latch Y Input 2 22 Latch Z

23 Latch W Input 4 24 Abort input

25 Motor Command X 26 Amp enable X

27 Motor Command Y 28 Amp enable Y

29 Motor Command Z 30 Amp enable Z

31 Motor Command W 32 Amp enable W

33 A+X 34 A-X

35 B+X 36 B-X

37 I+X 38 I-X

39 A+Y 40 A-Y

41 B+Y 42 B-Y

43 I+Y 44 I-Y

45 A+Z 46 A-Z

47 B+Z 48 B-Z

49 I+Z 50 I-Z

51 A+W 52 A-W

53 B+W 54 B-W

55 I+W 56 I-W

57 +12V 58 -12V

59 5V 60 Ground

DMC 1300 Appendices •• A - 304

J5 - General I/O (26 pin IDC)

 1 Analog 1 2 Analog 2

 3 Analog 3 4 Analog 4

 5 Analog 5 6 Analog 6

 7 Analog 7 8 Ground

 9 5 Volts 10 Output 1

11 Output 2 12 Output 3

13 Output 4 14 Output 5

15 Output 6 16 Output 7

17 Output 8 18 Input 8

19 Input 7 20 Input 6

21 Input 5 22 Input 4 (Latch W)

23 Input 3 (latch Z) 24 Input 2 (Latch Y)

25 Input 1 (latch X) 26 Input Common (Isolated 5 Volts)

J3 - Aux Encoder (20 pin IDC)

 1 Sample clock 2 Synch

 3 B-Aux W 4 B+Aux W

 5 A-Aux W 6 A+Aux W

 7 B-Aux Z 8 B+Aux Z

 9 A-Aux Z 10 A+Aux Z

11 B-Aux Y 12 B+Aux Y

13 A-Aux Y 14 A+Aux Y

15 B-Aux X 16 B+Aux X

17 A-Aux X 18 A+Aux X

19 5 Volt 20 Ground

DMC 1300 Appendices •• A - 305

J4 - Driver (20 pin IDC)

 1 Motor Command X 2 Amp enable X

 3 PWM X/STEP X 4 Sign X/DIR X

 5 NC 6 Motor Command Y

 7 Amp enable Y 8 PWM Y/STEP Y

 9 Sign Y/DIR Y 10 NC

11 Motor command Z 12 Amp enable Z

13 PWM Z/STEP Z 14 Sign Z/DIR Z

15 5 Volt 16 Motor command W

17 Amp enable W 18 PWM W/STEP W

19 Sign W/DIR W 20 Ground

J6 - Daughter Board Connector (60 pin)
For use only with a Galil daughter board.

J7 - 10 pin
For test only.

DMC 1300 Appendices •• A - 306

Connectors for Auxiliary Board (Axes E,F,G,H)

JD2 - Main (60 pin IDC)

1 Ground 2 5 Volts

3 N.C. 4 N.C.

5 Limit Common 6 Forward Limit - E

7 Reverse Limit - E 8 Home - E

9 Forward Limit - F 10 Reverse Limit - F

11 Home F 12 Forward Limit - G

13 Reverse Limit - G 14 Home - G

15 Forward Limit - H 16 Reverse Limit - H

17 Home H 18 Output 9

19 Input Common 20 Latch E

21 Latch F 22 Latch G

23 Latch H 24 Input 24

25 Motor Command E 26 Amp enable E

27 Motor Command F 28 Amp enable F

29 Motor Command G 30 Amp enable G

31 Motor Command H 32 Amp enable H

33 Channel A+ E 34 Channel A- E

35 Channel B+ E 36 Channel B- E

37 Channel I+ E 38 Channel I- E

39 Channel A+ F 40 Channel A- F

41 Channel B+ F 42 Channel B- F

43 Channel I+ F 44 Channel I- F

45 Channel A+ G 46 Channel A- G

47 Channel B+ G 48 Channel B- G

49 Channel I+ G 50 Channel I- G

51 Channel A+ H 52 Channel A- H

53 Channel B+ H 54 Channel B- H

55 Channel I+ H 56 Channel I- H

57 +12V 58 -12V

59 5V 60 Ground

DMC 1300 Appendices •• A - 307

NOTE: The ABCD axes and other I/O are located on the main DMC 1300 card

DMC 1300 Appendices •• A - 308

JD5 - I/O (26 pin IDC)

1 Input 17 (TTL) 2 Input 18 (TTL)

3 Input 19 (TTL) 4 Input 20 (TTL)

5 Input 21 (TTL) 6 Input 22 (TTL)

7 Input 23 (TTL) 8 Ground

9 5 Volts 10 Output 9

11 Output 10 12 Output 11

13 Output 12 14 Output 13

15 Output 14 16 Output 15

17 Output 16 18 Input 16

19 Input 15 20 Input 14

21 Input 13 22 Input 12 (Latch H)

23 Input 11 (Latch G) 24 Input 10 (Latch F)

25 Input 9 (Latch E) 26 Input Common (Isolated 5 Volts)

JD3 - 20 pin IDC - Auxiliary Encoders

1 N.C. 2 N.C.

3 Aux. B- H 4 Aux. B+ H

5 Aux. A- H 6 Aux. A+ H

7 Aux. B- G 8 Aux. B+ G

9 Aux. A- G 10 Aux. A+ G

11 Aux. B- F 12 Aux. B+ F

13 Aux. A- F 14 Aux. A+ F

15 Aux. B- E 16 Aux. B+ E

17 Aux. A- E 18 Aux. A+ E

19 5 Volt 20 Ground

DMC 1300 Appendices •• A - 309

JD4 - 20 pin IDC - Amplifiers

1 Motor Command E 2 Amp enable E

3 PWM E/Step E 4 Sign E/Dir E

5 NC 6 Motor Command F

7 Amp enable F 8 PWM F/Step F

9 Sign F/Dir F 10 NC

11 Motor Command G 12 Amp enable G

13 PWM G/Step G 14 Sign G/Dir G

15 5 Volt 16 Motor Command H

17 Amp enable H 18 PWM H/Step H

19 Sign H/Dir H 20 Ground H

JD6 - Daughterboard Connector (60 pin)
Connects to DMC 1300 Main Board, connector J6

DMC 1300 Appendices •• A - 310

Pin-Out Description for DMC 1300

Outputs

Analog Motor Command +/- 10 Volt range signal for driving amplifier. In servo mode, motor
command output is updated at the controller sample rate. In the
motor off mode, this output is held at the OF command level.

Amp Enable Signal to disable and enable an amplifier. Amp Enable goes low on
Abort and OE1.

PWM/STEP OUT PWM/STEP OUT is used for directly driving power bridges for DC
servo motors or for driving step motor amplifiers. For servo
motors: If you are using a conventional amplifier that accepts a +/-
10 Volt analog signal, this pin is not used and should be left open.
The switching frequency is 33.4 Khz for DMC 1300 and 16.7 Khz for
DMC 1300-18 . The PWM output is available in two formats:
Inverter and Sign Magnitude. In the Inverter mode, the PWM
signal is .2% duty cycle for full negative voltage, 50% for 0 Voltage
and 99.8% for full positive voltage. In the Sign Magnitude Mode
(Jumper SM), the PWM signal is 0% for 0 Voltage, 99.6% for full
voltage and the sign of the Motor Command is available at the sign
output.

PWM/STEP OUT For stepmotors: The STEP OUT pin produces a series of pulses for
input to a step motor driver. The pulses may either be low or high.
The pulse width is 50%. Upon Reset, the output will be low if the
SM jumper is on. If the SM jumper is not on, the output will be
Tristate.

Sign/Direction Used with PWM signal to give the sign of the motor command for
servo amplifiers or direction for step mo tors.

Error The signal goes low when the position error on any axis exceeds
the value specified by the error limit command, ER.

Output 1-Output 8

Output 9-Output 16

(DMC-1380 only)

These 8 TTL outputs are uncommitted and may be designated by
the user to toggle relays and trigger external events. The output
lines are toggled by Set Bit, SB, and Clear Bit, CB, instructions.
The OP instruction is used to define the state of all the bits of the
Output port.

DMC 1300 Appendices •• A - 311

Inputs

Encoder, A+, B+ Position feedback from incremental encoder with two channels in
quadrature, CHA and CHB. The encoder may be analog or TTL.
Any resolution encoder may be used as long as the maximum
frequency does not exceed 8,000,000 quadrature states/sec. The
controller performs quadrature decoding of the encoder signals
resulting in a resolution of quadrature counts (4 x encoder cycles).
Note: Encoders that produce outputs in the format of pulses and
direction may also be used by inputting the pulses into CHA and
direction into Channel B and using the CE command to configure
this mode.

Encoder Index, I+ Once-Per-Revolution encoder pulse. Used in Homing sequence or
Find Index command to define home on an encoder index.

Encoder, A-, B-, I- Differential inputs from encoder. May be input along with CHA,
CHB for noise immunity of encoder signals. The CHA- and CHB- -
inputs are optional.

Auxiliary Encoder, Aux A+, Aux
B+, Aux I+, Aux A-, Aux B-, Aux I-

Inputs for additional encoder. Used when an encoder on both the
motor and the load is required.

Abort A low input stops commanded motion instantly without a
controlled deceleration. Also aborts motion program.

Reset A low input resets the state of the processor to its power-on
condition. The previously saved state of the controller, along with
parameter values, and saved sequences are restored.

Forward Limit Switch When active, inhibits motion in forward direction. Also causes
execution of limit switch subroutine, #LIMSWI. The polarity of the
limit switch may be set with the CN command.

Reverse Limit Switch When active, inhibits motion in reverse direction. Also causes
execution of limit switch subroutine, #LIMSWI. The polarity of the
limit switch may be set with the CN command.

Home Switch Input for Homing (HM) and Find Edge (FE) instructions. Upon BG
following HM or FE, the motor accelerates to slew speed. A
transition on this input will cause the motor to decelerate to a stop.
The polarity of the Home Switch may be set with the CN command.

Input 1 - Input 8

Input 9 - Input 16 isolated

Input 17 - Input 23 - TTL

Uncommitted inputs. May be defined by the user to trigger events.
Inputs are checked with the Conditional Jump instruction and After
Input instruction or Input Interrupt. Input 1 is latch X, Input 2 is
latch Y, Input 3 is latch Z and Input 4 is latch W if the high speed
position latch function is enabled.

Latch High speed position latch to capture axis position within 20 nano
seconds on occurrence of latch signal. AL command arms latch.
Input 1 is latch X, Input 2 is latch Y, Input 3 is latch Z and Input 4 is
latch W. Input 9 is latch E, Input 10 is latch F, Input 11 is latch
G, Input 12 is latch H.

DMC 1300 Appendices •• A - 312

Jumper Description for DMC 1300

JUMPER LABEL FUNCTION (IF JUMPERED)

JP9 LSCOM Connect LSCOM to 5V

 INCOM Connect INCOM to 5V

JP11 A12 Address selection jumpers. Default is no jumpers for base

 A13 address of F0 00

 A14

 A15

JP12 IAD4 Interrupt address jumpers This three bit number must equal

 IAD2 the IRQ number selected, ie. IAD2 and IAD4 jumpered for

 IAD1 IRQ6.

JP13 IRQ7 Interrupt request jumpers. One of these must be

 IRQ6 jumpered to enable an interrupt line, and a service routine

 IRQ5 written to the host. In addition, the interrupt address

 IRQ4 jumpers (IAD) must be set and the EI command sent with a

 IRQ3 corresponding vector.

 IRQ2

 IRQ1

JP20 SMX For each axis, the SM jumper selects the SM

 SMY magnitude mode for servo motors or selects

 SMZ stepper motors. If you are using stepper

 SMW motors, SM must always be jumpered. The Analog command
is not valid with SM jumpered.

 OPT Reserved

JP21 MRST Master Reset enable. Returns controller to factory default
settings and erases EEPROM. Requires power-on or RESET to
be activated.

DMC 1300 Appendices •• A - 313

Offset Adjustments for DMC 1300

X offset Used to null ACMD offset for X axis

Y offset Used to null ACMD offset for Y axis

Z offset Used to null ACMD offset for Z axis

W offset Used to null ACMD offset for W axis

Note: These adjustments are made at the Galil factory and should not need adjustment under most
applications.

Accessories and Options

DMC-1310 Single Axis Controller

DMC-1320 Two-Axis Controller

DMC-1330 Three-Axis Controller

DMC-1340 Four-Axis Controller

DMC-1350 Five-Axis Controller

DMC-1360 Six-Axis Controller

DMC-1370 Seven-Axis Controller

DMC-1380 Eight-Axis Controller

ICM-1100* Interface board

AMP-1110 Single axis amplifier

AMP-1120 Two-axis amplifier

AMP-1130 Three-axis amplifier

AMP-1140 Four-axis amplifier

-MX option Memory expansion option to 2000 lines, 8000 array elements, 254 labels and 254
variables

-AF option Analog feedback option. Uses analog feedback for servo loop.

N23-54-1000 Servo motor; NEMA 23; 54 oz-in continuous

N34-150-1000 Servo motor; NEMA 34; 150 oz-in, continous

COMM 1300 Terminal emulator for use with DMC 1300 and Bit 3 VME system

DMC 1300 Appendices •• A - 314

ICM-1100 Interconnect Module
The ICM-1100 Interconnect Module provides easy connections between the DMC 1300 series
controllers and other system elements, such as amplifiers, encoders, and external switches. The ICM-
1100 accepts each DMC 1300 ribbon cable (for J2, J3, J4 and J5) and breaks them into screw-type
terminals. Each screw terminal is labeled for quick connection of system elements.

The ICM-1100 is packaged as a circuit board mounted to a metal enclosure. A version of the ICM-1100
is also available with servo amplifiers (see AMP-11X0).

Features

• Breaks out all DMC 1300 ribbon cables into individual screw-type terminals.

• Clearly identifies all terminals

• Provides jumper for connecting limit and input supplies to 5 volt supply from PC.

• Available with on-board servo drives (see AMP-1100).

• 10-pin IDC connectors for encoders.

Specifications

 Dimensions 5.7" x 13.4" x 2.4"

 Weight 2.2 pounds

AMP/ICM-1100 CONNECTIONS

Screw Terminals Internal DMC 1300 Connection

Terminal # Label I/O J2 J3 J4 J5 Description

1 GND 1 Ground

2 ACMDX O 25 1 X input to servo amp

3 AENX O 26 2 X amp enable

4 PULSX O 3 X pulse input for stepper

5 DIRX O 4 X direction input for stepper

6 ACMDY O 27 6 Y amp input

7 AENY O 28 7 Y amp enable

8 PULSY O 8 Y pulse for stepper

9 DIRY O 9 Y direction for stepper

10 ACMDZ O 29 11 Z amp input

11 AENZ O 30 12 Z amp enable

12 PULSZ O 13 Z pulse for stepper

13 DIRZ O 14 Z direction for stepper

14 ACMDW O 31 16 W amp input

15 AENW O 32 17 W amp enable

16 PULSW O 18 W pulse for stepper

DMC 1300 Appendices •• A - 315

17 DIRW O 19 W direction for stepper

18 AN1 I 1 Analog Input 1

19 AN2 I 2 Analog Input 2

20 AN3 I 3 Analog Input 3

21 AN4 I 4 Analog Input 4

22 AN5 I 5 Analog Input 5

23 AN6 I 6 Analog Input 6

24 AN7 I 7 Analog Input 7

25 GND 1,60 20 20 8

Terminal # Label I/O J2 J3 J4 J5 Description

26 OUT1 O 18 10 Digital Output 1

27 OUT2 O 11 Digital Output 2

28 OUT3 O 12 Digital Output 3

29 OUT4 O 13 Digital Output 4

30 OUT5 O 14 Digital Output 5

31 OUT6 O 15 Digital Output 6

32 OUT7 O 16 Digital Output 7

33 OUT8 O 17 Digital Output 8

34 INP8 I 18 Uncommitted Input 8

35 INP7 I 19 Uncommitted Input 7

36 INP6 I 20 Uncommitted Input 6

37 INP5 I 21 Uncommitted Input 5

38 INP4/LW I 23 22 Uncommit ted Input 4

39 INP3/LZ I 22 23 Uncommitted Input 3

40 INP2/LY I 21 24 Uncommitted Input 2

41 INP1/LX I 20 25 Uncommitted Input 1

42 INCOM 19 26 Input common

43 GND 1,60 20 20 8 Ground

44 WAB- I 3 W Auxiliary encoder B-

45 WAB+ I 4 W Auxiliary encoder B+

46 WAA- I 5 W Auxiliary encoder A -

47 WAA+ I 6 W Auxiliary encoder A+

48 ZAB- I 7 Z Auxiliary encoder B-

49 ZAB+ I 8 Z Auxiliary encoder B+

50 ZAA- I 9 Z Auxiliary encoder A-

51 ZAA+ I 10 Z Auxiliary encoder A+

52 YAB- I 11 Y Auxiliary encoder B-

53 YAB+ I 12 Y Auxiliary encoder B+

DMC 1300 Appendices •• A - 316

54 YAA- I 13 Y Auxiliary encoder A-

55 YAA+ I 14 Y Auxiliary encoder A+

56 XAB- I 15 X Auxiliary encoder B-

57 XAB+ I 16 X Auxiliary encoder B+

58 XAA- I 17 X Auxiliary encoder A-

59 XAA+ I 18 X Auxiliary encoder A+

60 GND 1,60 20 20 8 Ground

61 5V 2,59 19 15 9 5 Volts

62 LSCOM 5 X Limit common

63 FLSX I 6 X Forward limit

64 RLSX I 7 X Reverse limit

DMC 1300 Appendices •• A - 317

Terminal # Label I/O J2 J3 J4 J5 Description

65 HOMEX I 8 X Home Input

66 FLSY I 9 Y Forward limit

67 RLSY I 10 Y Reverse limit

68 HOMEY I 11 Y Home

69 FLSZ I 12 Z Forward limit

70 RLSZ I 13 Z Reverse limit

71 HOMEZ I 14 Z Home

72 FLSW I 15 W Forward limit

73 RLSW I 16 W Reverse limit

74 HOMEW I 17 W Home

75 GND 1,60 20 20 8 Ground

76 ABORT I 24 Abort input

77 XA+ I 33 X Main encoder A+

78 XA- I 34 X Main encoder A -

79 XB+ I 35 X Main encoder B+

80 XB- I 36 X Main encoder B-

81 XI+ I 37 X Main encoder I+

82 XI- I 38 X Main encoder I-

83 YA+ I 39 Y Main encoder A+

84 YA- I 40 Y Main encoder A -

85 YB+ I 41 Y Main encoder B+

86 YB- I 42 Y Main encoder B-

87 YI+ I 43 Y Main encoder I+

88 YI- I 44 Y Main encoder I-

89 ZA+ I 45 Z Main encoder A+

90 ZA - I 46 Z Main encoder A -

91 ZB+ I 47 Z Main encoder B+

92 ZB- I 48 Z Main encoder B-

93 ZI+ I 49 Z Main encoder I+

94 ZI- I 50 Z Main encoder I-

95 WA+ I 51 W Main encoder A+

96 W A - I 52 W Main encoder A -

97 WB+ I 53 W Main encoder B+

98 W B- I 54 W Main encoder B-

99 WI+ I 55 W Main encoder I+

100 W I- I 56 W Main encoder I-

DMC 1300 Appendices •• A - 318

Terminal # Label I/O J2 J3 J4 J5 Description

101 +12V 57

102 -12V 58

103 5V 2,59 19 15 9

104 GND 1,60 20 20 8

J2 - Main (60 pin IDC)

J3 - Aux Encoder (20 pin IDC)

J4 - Driver (20 pin IDC)

J5 - General I/O (26 pin IDC)

Connectors are the same as described in section entitled
“Connectors for DMC 1300 Main Board”. see pg. 303

 JX6, JY6, JZ6, JW6 - Encoder Input (10 pin IDC)

 1 CHA 2 +VCC

 3 GND 4 No Connection

 5 CHA - 6 CHA

 7 CHB - 8 CHB

 9 INDEX - 10 INDEX

*CAUTION: The ICM-1100 10-pin connectors are designed for the N23 and N34
encoders from Galil. If you are using Galil's Motor-5-500, Motor-50-1000 or
Motor-500-1000, you must cut encoder wires 5, 6, 7 and 9.

DMC 1300 Appendices •• A - 319

ICM-1100 Drawing

13.40"

0.44"

0.24"

0.70"

0.45"

3.70" 5.70"

2.85"

1.00"
1.01"

0.70"
1.00"

DMC 1300 Appendices •• A - 320

AMP-11x0 Mating Power Amplifiers
The AMP-11X0 series are mating, brush-type servo amplifiers for the DMC 1300. The AMP-1110
contains one amplifier; the AMP-1120, two amplifiers; the AMP-1130, three; and the AMP-1140, four.
Each amplifier is rated for 7 amps continuous, 10 amps peak at up to 80 volts. The gain of the AMP-
11X0 is 1 amp/volt. The AMP-11X0 requires an external DC supply. The AMP-11X0 connects directly
to the DMC 1300 ribbon connectors, and screw-type terminals are provided for connection to motors,
encoders and external switches.

Features

• 6 amps continuous, 10 amps peak; 20 to 80 volts.

• Available with 1, 2, 3, or 4 amplifiers.

• Connects directly to DMC 1300 series controllers via ribbon cables.

• Screw-type terminals for easy connection to motors, encoders and switches.

• Steel mounting plate with 1/4" keyholes.

Specifications

Minimum motor inductance: 1 mH

PWM frequency 30 KHz

Ambient operating temperature 0-70° C

Dimensions 5.7" x 13.4" x 2.5"

Weight 4 pounds

Mounting Keyholes - 1/4Φ

Gain 1 amp/volt

DMC 1300 Appendices •• A - 321

Coordinated Motion - Mathematical Analysis
The terms of coordinated motion are best explained in terms of the vector motion. The vector velocity,
Vs, which is also known as the feed rate, is the vector sum of the velocities along the X and Y axes, Vx
and Vy.

 Vs Vx Vy= +2 2

The vector distance is the integral of Vs, or the total distance traveled along the path. To illustrate this
further, suppose that a string was placed along the path in the X-Y plane. The length of that string
represents the distance traveled by the vector motion.

The vector velocity is specified independently of the path to allow continuous motion. The path is
specified as a collection of segments. For the purpose of specifying the path, define a special X-Y
coordinate system whose origin is the starting point of the sequence. Each linear segment is specified
by the X-Y coordinate of the final point expressed in units of resolution, and each circular arc is defined
by the arc radius, the starting angle, and the angular width of the arc. The zero angle corresponds to
the positive direction of the X-axis and the CCW direction of rotation is positive. Angles are expressed
in degrees, and the resolution is 1/256th of a degree. For example, the path shown in Fig. 12.2 is
specified by the instructions:

 VP 0,10000

 CR 10000, 180, -90

 VP 20000, 20000

10000 20000

20000

10000

Y

C D

B

A X

Figure 12.2 - X-Y Motion Path

DMC 1300 Appendices •• A - 322

The first line describes the straight line vector segment between points A and B. The next segment is a
circular arc, which starts at an angle of 180° and traverses -90°. Finally, the third line describes the
linear segment between points C and D. Note that the total length of the motion consists of the
segments:

 A-B Linear 10000 units

 B-C Circular
R ∆θ π2

360
 = 15708

 C-D Linear 1000

 Total 35708 counts

In general, the length of each linear segment is

 L Xk Ykk = +2 2

Where Xk and Yk are the changes in X and Y positions along the linear segment. The length of the
circular arc is

 L Rk k k= ∆Θ 2 360π

The total travel distance is given by

 D Lk

k

n

=
=

∑
1

The velocity profile may be specified independently in terms of the vector velocity and acceleration.

For example, the velocity profile corresponding to the path of Fig. 12.2 may be specified in terms of the
vector speed and acceleration.

 VS 100000

 VA 2000000

The resulting vector velocity is shown in Fig. 12.3.

0.05 0.357

10000

Velocity

time (s)

0.407T
a

T
a

T
s

Figure 12.3 - Vector Velocity Profile

The acceleration time, Ta, is given by

DMC 1300 Appendices •• A - 323

 T
VS
VA

sa = = =
100000
2000000

0 05.

The slew time, Ts, is given by

 T
D

VS
T ss a= − = = − =

35708
100000

0 05 0 307. .

The total motion time, Tt, is given by

 T
D

VS
T st a= + = 0 407.

The velocities along the X and Y axes are such that the direction of motion follows the specified path,
yet the vector velocity fits the vector speed and acceleration requirements.

For example, the velocities along the X and Y axes for the path shown in Fig. 12.2 are given in Fig. 12.4.

Fig. 12.4a shows the vector velocity. It also indicates the position point along the path starting at A
and ending at D. Between the points A and B, the motion is along the Y axis. Therefore,

 Vy = Vs

and

 Vx = 0

Between the points B and C, the velocities vary gradually and finally, between the points C and D, the
motion is in the X direction.

A

B

D

(a)

(b)

(c)

time

C

Figure 12.4 - Vector and Axes Velocities

DMC 1300 Appendices •• A - 324

DMC 500/DMC 1300 Comparison
Modes of Motion DMC 500 DMC 1300

Relative positioning Yes Yes

Absolute positioning Yes Yes

Velocity control Yes Yes

Linear interpolation XY only Up to 4 axes

Circular interpolation XY only Any 2 axes plus 3rd tangent

Maximum number of
segments in motion path

255 Infinite, continuous vector
feed

Contouring Yes Yes

Electronic gearing No Yes

S-curve profiling No Yes

Programmable acceleration
rate

Yes Yes

Programmable deceleration
rate

Yes No

Specifications DMC 500 DMC 1300

Maximum encoder
frequency

2 x 106 counts/s 8 x 106 counts/s

DAC resolution 10-bits 14-bits or 16-bits

Maximum move length 8 x 106 2 x 109

Sample time 1 msec 0.5 msec (4 axes)

Program memory 500 lines, 32 chr 500 lines, 40 chr

EEPROM memory for
parameter storage

None Yes

Number of variables 64 (V0-V63) 126; symbolic up to 8 chrs,
in addition to 64 (V0-V63).

Number of array elements None 1600 (up to 14 arrays); 8000
(30 arrays) for DMC 1380 or
DMC 1340-MX

Digital filter type GN,ZR,KI KP,KI,KD with velocity and
acceleration feedforward
and integrator limit

Hardware DMC 500 DMC 1300

Maximum # of axes/card 3 4 (8 for DMC-1380)

Analog inputs 8 with DMC-63010 7 standard

DMC 1300 Appendices •• A - 325

Digital inputs 8 TTL 8 optoisolated (24 for
DMC-1380)

Digital outputs 8 TTL 8 TTL (16 for DMC-1380)

High speed position latch None Yes

Dual encoder inputs None Yes

Motor command output +/- 10V +/- 10V and step/direction

DMC 500/DMC 1300 Command Comparison

Unchanged Commands
AB Abort motion

AC Acceleration rate

AD After distance trippoint

AI After input trippoint

AM After motion trippoint

AP After absolute position trippoint

AS After at speed trippoint

BG Begin motion

CB Clear output bit

CM Contour mode

CP Clear program

CR Circular segment

CS Clear motion sequence

DP Define position

ED Edit mode

EN End program

EO Echo ON/OFF

ER Define error limit

FA Acceleration feedforward

FE Find edge

GN Gain

HM Home

II Interrupt for input

IP Increment position

JG Jog mode

JP Conditional jump

JS Conditional jump subroutine

KI Integrator gain

MG Message

DMC 1300 Appendices •• A - 326

MO Motor off

NO No-op

OE Automatic error shut-off

OF Offset

OP Write output port

PA Position absolute

PP Program pause

PR Position relative

RE Return from error subroutine

RI Return from interrupt subroutine

RM Response mode

RS Reset controller

SB Set output bit

SC Stop code/status

SH Servo here

SP Slew speed

ST Stop motion/program

TB Tell status byte

TC Tell error code

TE Tell error

TI Tell inputs

TL Torque limit

TM Sample time

TP Tell position

TR Trace

TS Tell switches

TT Tell torque

VA Vector acceleration

V[n]= Variable definition

VP Vector position

VS Vector speed

W T Programmable timer

XQ Execute program

ZR Filter zero

ZS Zero subroutine stack

New Commands
A L Arm latch

DMC 1300 Appendices •• A - 327

AR After relative distance trippoint

A T After time

AV After vector distance trippoint

A[i]=n Define array element

BL Set reverse software limit

BN Burn EEPROM

CD Contour data

CE Configure encoder

CN Configure inputs and step motor

DA Deallocate variables and arrays

DC Deceleration

DE Dual encoder position

DM Dimension array

DT Delta time for contouring

DV Dual Velocity

EI Enable interrupts

ES Ellipse scale

FI Search for encoder index

FL Set forward software limit

FV Velocity feedforward

GA Specify master axis for gearing

GR Specify gear ratio

HX Halt task

IL Integrator limit

IT Independent time constant for smoothing

KD Derivative constant

KP Proportional constant

KS Stepper Smoothing Constant

LE Linear interpolation end

LI Linear interpolation distance

LM Linear interpolation mode

MT Motor type

OB Output Bit

RA Record array

RC Record

RD Record data

RP Report command position

TN Tangent

TV Tell velocity

DMC 1300 Appendices •• A - 328

VD Vector deceleration

VE Vector sequence end

VM Coordinated motion mode

VT Vector time constant - S-curve

W C Wait for contour data

Deleted Commands
Deleted Commands Comments

DB Deadband Not necessary

DC Decimal mode Use local format; PF,VF

DD Define dual encoder position DE

DR Set DAC resolution 14-bits only

HX Hex mode Use local format; PF,VF

LA Arm latch Replaced by AL command

LN Learn mode Use Record mode; RA and RD

MF Master frequency Use Electronic Gearing: GA & GR

MP Master position Use Electronic Gearing; GA & GR

MS Master/slave mode Use Electronic Gearing; GA & GR

P Axis position (equate) Use _TP

PC Latch position Use _RP

PD Dual encoder position Use _DE

PE Position error (equate) Use _TE

PL Pole Not required with KP, KD, KI

RC Report when complete Use AM or _BG

RM Acceleration ramp Use IT

SE Specify encoder type Use CE

SV Servo Use SH

TA Enable S-curve Use IT

TD Tell dual encoder Use MG _DE

TF Tell master frequency Use Electronic
Gearing; GA & GR

TV Enable S-curve Use VT

VR Specify S-curve Use VT

ZM Zero master Use Electronic Gearing; GA
& GR

DMC 1300 Appendices •• A - 329

List of Other Publications
"Step by Step Design of Motion Control Systems"

 by Dr. Jacob Tal

"Motion Control Applications"

 by Dr. Jacob Tal

"Motion Control by Microprocessors"

 by Dr. Jacob Tal

Contacting Us
Galil Motion Control

203 Ravendale Drive

Mountain View, CA 94043

Phone: 650-967-1700

Fax: 650-967-1751

BBS: 650-964-8566 (8-N-1) up to 14,400 baud.

Internet address: support@galilmc.com

URL: www.galilmc.com

FTP: galilmc.com

DMC 1300 Appendices •• A - 330

WARRANTY
All products manufactured by Galil Motion Control are warranted against defects in materials and
workmanship. The warranty period for controller boards is 1 year. The warranty period for all other
products is 180 days.

In the event of any defects in materials or workmanship, Galil Motion Control will, at its sole option,
repair or replace the defective product covered by this warranty without charge. To obtain warranty
service, the defective product must be returned within 30 days of the expiration of the applicable
warranty period to Galil Motion Control, properly packaged and with transportation and insurance
prepaid. We will reship at our expense only to destinations in the United States.

Any defect in materials or workmanship determined by Galil Motion Control to be attributable to
customer alteration, modification, negligence or misuse is not covered by this warranty.

EXCEPT AS SET FORTH ABOVE, GALIL MOTION CONTROL WILL MAKE NO WARRANTIES
EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO SUCH PRODUCTS, AND SHALL NOT BE
LIABLE OR RESPONSIBLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

COPYRIGHT (10-94)

The software code contained in this Galil product is protected by copyright and must not be
reproduced or disassembled in any form without prior written consent of Galil Motion Control, Inc.

Doc-To-Help Standard Template Index •• 331

Index

A

Abort 1, 25–27, 31, 66, 72, 139, 141, 162, 301, 303, 310–11,
317, 325

Off-On-Error 11, 27, 31, 139, 141, 162, 243
Stop Motion 66, 72, 116, 142, 265

Absolute Position 19, 61–62, 107–8, 113, 169–70, 194,
236, 239, 277, 325

Absolute Value 112, 119–20, 140
Acceleration 163, 171, 204–8, 218–20, 276, 286–88, 322–

23, 324–26, 328
Accessories 313
Address 125–26, 144, 250–51, 329
AMP-1100 14, 314
Amplifier Enable 32–33, 139
Amplifier Gain 4, 150, 153, 155
Analog Input 1, 3, 25, 32, 120–21, 123, 128, 130–31, 136,

301, 315, 324
Arithmetic Functions 1, 97, 112, 118, 121
Arm Latch 94, 167, 326–28
Array 3, 70, 80–83, 97, 104, 112, 118, 123–28, 190, 193,

242, 302, 313, 324, 327
Automatic Subroutine 101, 114

CMDERR 101, 115, 117
LIMSWI 25, 101, 114–15, 140–42, 252
MCTIME 101, 107, 115, 116, 234, 284
POSERR 101, 114–15, 140–41, 202, 243, 252

Auxiliary Board 306
Auxiliary Encoder 1, 25, 76, 83–87, 83–87, 182, 183, 192,

209, 308, 311, 315
Dual Encoder 87, 126, 192, 196

B

Backlash 86–87, 136, 196
Backlash Compensation

Dual Loop 83–87, 83–87, 136, 196
Begin Motion 325
Binary 159

Bit-Wise 118
Burn 177

EEPROM 3, 177, 189, 259
Non-volatile memory 1–3
Variables 179

Bypassing Optoisolation 30

C

Capture Data
Record 80, 82, 123, 127, 249–51

Circle 133, 185, 186, 203
Circular Interpolation 1, 23–24, 71–72, 76, 125, 133, 250,

289
Clear Bit 128, 180
Clear Sequence 66, 68, 72, 74, 188
Clock 123, 274, 276

Sample Time 276
Update Rate 274

CMDERR 101, 115, 117
Code 159, 167, 182, 192, 196, 202, 205–6, 209, 212, 234,

236, 239, 262, 284
Command

Syntax 55–56, 159–60
Command Summary 60, 123, 126
Commanded Position 62–64, 76–77, 117, 126, 131, 145–

47, 209
Communication 3, 189
Compare Function 192, 270
Compensation

Backlash 86–87, 136, 196
Conditional jump 1, 21, 27, 97, 110–12, 130, 166, 221–22
Configuration

Jumper 30, 144, 184, 240, 259
Connector 25, 28, 33, 184, 240
Contour Mode 78–83, 181, 183, 188, 195, 295
Control Filter

Damping 144, 148
Gain 210, 224–25
Integrator 148, 152–53, 217
Proportional Gain 148

Coordinated Motion 57, 70–72, 209, 277, 286–87, 289,
292, 293

Circular 1, 23–24, 71–72, 76, 125, 133, 250, 289
Contour Mode 78–83, 181, 183, 188, 195, 295
Electronic Gearing 1, 72–78, 209, 211
Gearing 1, 72–78, 209, 211
Linear Interpolation 23, 64–68, 64–68, 70, 76, 78, 227,

229–31, 291
Vector Mode 173–74, 203, 291

Cosine 118–19, 124
Cycle Time

Clock 123, 274, 276

332 •• Index Doc-To-Help Standard Template

D

DAC 1, 148, 152–53, 155
Damping 144, 148
Data Capture 125–26, 249
Data Output

Set Bit 128, 180, 261
Debugging 104, 279
Deceleration 1, 162–63, 171, 191, 204–7, 219–20, 294
Default Setting 259

Master Reset 161, 259, 260, 274
Differential Encoder 12, 14, 144
Digital Filter 152–53, 155–57
Digital Input 25, 27, 119, 129
Digital Output 119, 128

Clear Bit 128, 180
Dip Switch

Address 250–51, 329
Download 97
Dual Encoder 87, 126, 192, 196

Backlash 86–87, 136, 196
Dual Loop 83–87, 83–87, 136, 196

Dual Loop 83–87, 83–87, 136, 196
Backlash 86–87, 136, 196

E

Echo 266
Edit Mode 21, 97–98, 105, 197, 297
Editor 21, 97–98
EEPROM 3, 177, 189, 259

Non-Volatile Memory 1–3
Electronic Gearing 1, 72–78, 209, 211
Ellipse Scale 74, 203
Enable

Amplifer Enable 32–33, 139
Encoder 58

Auxiliary Encoder 1, 25, 76, 83–87, 83–87, 182, 183, 192,
209, 308, 311, 315

Differential 12, 14, 144
Dual Encoder 87, 126, 192, 196
Index Pulse 12, 26, 91, 206, 212
Quadrature 1–3, 4, 132, 140, 151, 164, 169, 170, 173, 176,

181–82, 186, 194, 202, 218, 236, 239, 246, 248, 256,
278, 283, 291

Error
Codes 267, 268

Error Code 159, 167, 182, 192, 196, 202, 205–6, 209, 212,
234, 236, 239, 262, 284

Error Handling 25, 101, 114–15, 140–42, 252
Error Limit 11, 13, 17, 31, 115, 139–41, 202, 280

Off-On-Error 11, 27, 31, 139, 141, 162, 243
Example

Wire Cutter 131

Execute Program 21–22, 297

F

Feedforward Acceleration 204
Feedrate 74, 110, 133
Filter Parameter

Damping 144, 148
Gain 210, 224–25
Integrator 148, 152–53, 217
PID 14, 148, 152, 157
Proportional Gain 148
Stability 87, 136, 143–44, 196

Find Edge 26, 91, 205–6
Frequency 1, 5, 154–56, 226

Sample Time 276
Function 27, 117–24, 133, 135, 136
Functions

Arithmetic 97, 112, 118, 121

G

Gain 210, 224–25
Proportional 148

Gear Ratio 76–77, 209, 211
Gearing 1, 72–78, 209, 211

H

Halt 67, 72, 103–7, 110–11, 129, 166, 168, 214, 265
Abort 1, 25–27, 31, 66, 72, 139, 141, 162, 301, 303, 310–

11, 317, 325
Off-On-Error 11, 27, 31, 139, 141, 162, 243
Stop Motion 66, 72, 116, 142, 265

Hardware 1, 25, 128, 139, 176, 207, 259
Address 125–26, 144, 250–51, 329
Amplifier Enable 32–33, 139
Clear Bit 128, 180
Jumper 30, 144, 184, 240, 259
Offset Adjustment 33, 143
Output of Data 127
Set Bit 128, 180, 261
Torque Limit 275
TTL 5, 25, 27, 32–33, 139

Home Input 26, 91, 123, 205–6
Homing 26, 91, 205–6, 212

Find Edge 26, 91, 205–6

I

I/O
Amplifier Enable 32–33, 139
Analog Input 120–21, 123, 128, 130–31, 136
Clear Bit 128, 180

Doc-To-Help Standard Template Index •• 333

Digital Input 25, 27, 119, 129
Digital Output 119, 128
Home Input 26, 91, 123, 205–6
Output of Data 127
Set Bit 128, 180, 261
TTL 5, 25, 27, 32–33, 139

ICM-1100 7–9, 11, 25, 30, 31, 139
Independent Motion

Jog 19, 108–10, 115–17, 122, 136, 140, 191, 218, 220, 264
Index Pulse 12, 26, 91, 206, 212
ININT 101, 115, 130, 166, 201, 215, 253
Input

Analog 120–21, 123, 128, 130–31, 136
Digital 119, 129

Input Interrupt 101, 110, 115, 130, 201, 215, 266
ININT 101, 115, 130, 166, 201, 215, 253

Inputs
Analog 1, 3, 25, 32, 301, 315, 324

Installation 8–9, 143
Integrator 148, 152–53, 217
Interconnect Module

AMP-1100 314
ICM-1100 11, 25, 30, 31, 139

Interface
Terminal 121

Internal Variable 23, 112, 120, 122, 168
Interrogation 18, 20, 58–59, 127, 218
Interrupt 1–3, 101–3, 110, 114–15, 130, 177, 198–99, 201,

215, 249, 252–53, 266, 285, 299
Invert 182, 240
Invert Loop Polarity 144

J

Jog 19, 108–10, 115–17, 122, 136, 140, 191, 218, 220, 264
Joystick 121, 135–36
Jumper 30, 144, 184, 240, 259

K

Keyword 112, 118, 120, 123–24, 228, 233, 274
TIME 123–24, 274

KS 226

L

Label 30, 97–103, 107–15, 122–23, 133, 136–37, 141, 215,
221–22, 234, 252–53, 259, 284–85

LIMSWI 140–42
POSERR 140–41
Special Label 101, 141, 234, 284

Latch 31, 94, 167, 184, 254
Arm Latch 94, 167, 326–28
Data Capture 125–26, 249

Position Capture 94, 167
Record 80, 82, 123, 127, 249–51
Teach 82, 249

Limit
Torque Limit 13, 20

Limit Switch 25–27, 31, 101–3, 114–15, 123, 140–42, 144,
184, 207, 211, 228, 233, 252, 262, 266

LIMSWI 25, 101, 114–15, 140–42, 252
Linear Interpolation 23, 64–68, 64–68, 70, 76, 78, 227,

229–31, 291
Clear Sequence 66, 68, 72, 74, 188

Logical Operator 113, 221–22

M

Masking
Bit-Wise 118

Master Reset 161, 259, 260, 274
Math Function

Absolute Value 112, 119–20, 140
Bit-Wise 118
Cosine 118–19, 124
Logical Operator 113, 221–22
Sine 119–20

Mathematical Expression 117, 120
MCTIME 101, 107, 115, 116, 234, 284
Memory 1–3, 21, 97, 104, 113, 115, 123, 177, 190

Array 3, 70, 80–83, 97, 104, 112, 118, 123–28, 190, 193,
242, 302, 313, 324, 327

Download 97
Message 104, 115–17, 119, 127–28, 130, 141–42
Modelling 145, 148–49, 153
Motion Complete

MCTIME 101, 107, 115, 116, 234, 284
Motion Smoothing 1, 89, 90

S-Curve 66, 72, 171, 219, 294
Motor Command 1, 13, 20, 33, 152, 243–44, 275
Moving

Acceleration 163, 171, 204–8, 218–20, 276, 286–88,
322–23, 324–26, 328

Begin Motion 325
Circular 1, 23–24, 71–72, 76, 125, 133, 250, 289

Multitasking 103, 214
Execute Program 21–22, 297
Halt 67, 72, 103–7, 110–11, 129, 166, 168, 214, 265

N

Non-volatile memory
Burn 177

Non-Volatile Memory 1–3

334 •• Index Doc-To-Help Standard Template

O

OE
Off-On-Error 139, 141, 162, 243

Off-On-Error 11, 27, 31, 139, 141, 162, 243
Offset Adjustment 33, 143
Operand

Internal Variable 23, 112, 120, 122, 168
Operators

Bit-Wise 118
Optoisolation 25, 27–29, 31

Home Input 26, 91, 123, 205–6
Output

Amplifier Enable 32–33, 139
ICM-1100 11, 25, 30, 31
Interconnect Module 7–9
Motor Command 1, 13, 20, 33, 152, 243–44, 275

Output of Data 127
Clear Bit 128, 180
Set Bit 128, 180, 261

P

PID 14, 148, 152, 157
Play Back 127
Plug and Play 198, 285
POSERR 101, 114–15, 140–41, 202, 243, 252

Position Error 13, 19, 164, 224, 243, 256
Position Capture 94, 167

Latch 31, 94, 167, 184, 254
Teach 82, 249

Position Error 11, 13, 19, 31, 101, 114–15, 122, 125–26,
131, 136, 139–41, 144, 147, 164, 224, 243, 256

POSERR 202, 243, 252
Position Follow 131
Position Limit 140, 207
Program Flow 100, 106

Interrupt 1–3, 101–3, 110, 114–15, 130, 177, 198–99,
201, 215, 249, 252–53, 266, 285, 299

Stack 114, 117, 130, 215, 252–53, 296, 299
Programmable 1, 128, 136, 140

EEPROM 3, 177, 189, 259
Programming

Halt 103–7, 110–11, 129, 166, 168, 214, 265
Proportional Gain 148
Protection

Error Limit 11, 13, 17, 31, 115, 139–41, 202, 280
Torque Limit 13, 20, 275

PWM 4

Q

Quadrature 1–3, 4, 132, 140, 151, 164, 169, 170, 173, 176,
181–82, 186, 194, 202, 218, 236, 239, 246, 248, 256,
278, 283, 291

Quit
Abort 1, 25–27, 31, 66, 72, 139, 141, 162, 301, 303, 310–

11, 317, 325
Stop Motion 66, 72, 116, 142, 265

R

Record 80, 82, 123, 127, 249–51
Latch 31, 94, 167, 184, 254
Position Capture 94, 167
Teach 82, 249

Register 122
Reset 25, 32, 111, 139, 141, 161, 189, 258–59, 258–59, 274

Master Reset 161, 259, 260, 274
Standard 274

S

Sample Time 276
Update Rate 274

Save
Burn 177
Non-Volatile Memory 1–3

SB
Set Bit 128, 180, 261

Scaling
Ellipse Scale 74, 203

S-Curve 171, 219, 294
Motion Smoothing 1, 90

Selecting Address 125–26, 144, 250–51, 329
Set Bit 128, 180, 261
Sine 119–20
Single-Ended 4, 12, 14
Slew 1, 107, 110, 132, 218, 220, 264
Smoothing 1, 66, 68, 72, 74, 83–90, 219, 226

KS 226
Software

Terminal 121
Special Label 101, 141, 234, 284
Specification 227, 229–31, 265
Stability 87, 136, 143–44, 148, 154, 196
Stack 114, 117, 130, 215, 252–53, 296, 299

Zero Stack 117, 130
Standard Reset 274
Status 68, 104–6, 122, 126, 183, 189, 190, 214, 243, 245,

250, 266–72, 280, 299
Interrogation 18, 20, 58–59, 75, 127, 218
Stop Code 126, 144, 262

Step Motor 1–4, 7, 90–91, 184, 226, 240

Doc-To-Help Standard Template Index •• 335

KS, Smoothing 1, 66, 68, 72, 74, 83–90, 219, 226
Smoothing 226

Stop
Abort 1, 25–27, 31, 66, 72, 139, 141, 162, 301, 303, 310–

11, 317, 325
Stop Code 126, 144, 159, 167, 182, 192, 196, 202, 205–6,

209, 212, 234, 236, 239, 262, 284
Stop Motion 66, 72, 116, 142, 265
Subroutine 25, 101, 111–15, 130, 140–41, 215, 222, 252–

53, 284, 299
Automatic Subroutine 101, 114

Synchronization 4
Syntax 55–56, 159–60

T

Tangent 71, 73–74, 277, 289
Teach 82, 249

Data Capture 125–26, 249
Latch 31, 94, 167, 184, 254
Play-Back 127
Position Capture 94, 167
Record 80, 82, 123, 127, 249–51

Tell Error
Position Error 13, 19, 164, 224, 243, 256

Tell Position 108, 122–24
Terminal 26, 30, 121, 189
Theory 145, 223, 225

Damping 144, 148
Digital Filter 152–53, 155–57
Modelling 145, 148–49, 153
PID 14, 148, 152, 157
Stability 87, 136, 143–44, 148, 154, 196

Time
Clock 123, 274, 276
Sample Time 276
Update Rate 274

TIME 123–24, 274
Time Interval 78–80, 82, 125, 183, 195, 249
Timeout 101, 107, 115, 116, 234, 284

MCTIME 101, 107, 115, 116, 234, 284
Torque Limit 13, 20, 275
Trigger 1, 97, 106, 108–11, 171, 202
Trippoint 107–8, 114, 164, 168–75, 169, 170, 214–15, 234,

236, 239, 252–53, 284, 296
Troubleshooting 143
TTL 5, 25, 27, 32–33, 139
Tuning

Stability 87, 136, 143–44, 148, 154, 196

U

Update Rate 274
Sample Time 276

V

Variable
Internal 23, 112, 120, 122, 168

Vector Acceleration 23–24, 68–69, 74, 133, 286–88
Vector Deceleration 23–24, 68–69, 74
Vector Mode 173–74, 203, 291

Circle 133, 185, 186, 203
Circular Interpolation 1, 23–24, 71–72, 76, 125, 133, 250,

289
Clear Sequence 66, 68, 72, 74, 188
Ellipse Scale 74, 203
Feedrate 74, 110, 133
Tangent 71, 73–74, 277, 289

Vector Speed 23–24, 65–72, 74, 110, 133, 186, 229–31, 264

W

Wire Cutter 131

X

XQ
Execute Program 21–22, 297

Z

Zero Stack 117, 130

